75 \% ( x - 1 ) - 25 \% ( x - 4 ) = 25 \% ( x + 6 )
Solve for x
x=5
Graph
Share
Copied to clipboard
\frac{3}{4}\left(x-1\right)-\frac{25}{100}\left(x-4\right)=\frac{25}{100}\left(x+6\right)
Reduce the fraction \frac{75}{100} to lowest terms by extracting and canceling out 25.
\frac{3}{4}x+\frac{3}{4}\left(-1\right)-\frac{25}{100}\left(x-4\right)=\frac{25}{100}\left(x+6\right)
Use the distributive property to multiply \frac{3}{4} by x-1.
\frac{3}{4}x-\frac{3}{4}-\frac{25}{100}\left(x-4\right)=\frac{25}{100}\left(x+6\right)
Multiply \frac{3}{4} and -1 to get -\frac{3}{4}.
\frac{3}{4}x-\frac{3}{4}-\frac{1}{4}\left(x-4\right)=\frac{25}{100}\left(x+6\right)
Reduce the fraction \frac{25}{100} to lowest terms by extracting and canceling out 25.
\frac{3}{4}x-\frac{3}{4}-\frac{1}{4}x-\frac{1}{4}\left(-4\right)=\frac{25}{100}\left(x+6\right)
Use the distributive property to multiply -\frac{1}{4} by x-4.
\frac{3}{4}x-\frac{3}{4}-\frac{1}{4}x+\frac{-\left(-4\right)}{4}=\frac{25}{100}\left(x+6\right)
Express -\frac{1}{4}\left(-4\right) as a single fraction.
\frac{3}{4}x-\frac{3}{4}-\frac{1}{4}x+\frac{4}{4}=\frac{25}{100}\left(x+6\right)
Multiply -1 and -4 to get 4.
\frac{3}{4}x-\frac{3}{4}-\frac{1}{4}x+1=\frac{25}{100}\left(x+6\right)
Divide 4 by 4 to get 1.
\frac{1}{2}x-\frac{3}{4}+1=\frac{25}{100}\left(x+6\right)
Combine \frac{3}{4}x and -\frac{1}{4}x to get \frac{1}{2}x.
\frac{1}{2}x-\frac{3}{4}+\frac{4}{4}=\frac{25}{100}\left(x+6\right)
Convert 1 to fraction \frac{4}{4}.
\frac{1}{2}x+\frac{-3+4}{4}=\frac{25}{100}\left(x+6\right)
Since -\frac{3}{4} and \frac{4}{4} have the same denominator, add them by adding their numerators.
\frac{1}{2}x+\frac{1}{4}=\frac{25}{100}\left(x+6\right)
Add -3 and 4 to get 1.
\frac{1}{2}x+\frac{1}{4}=\frac{1}{4}\left(x+6\right)
Reduce the fraction \frac{25}{100} to lowest terms by extracting and canceling out 25.
\frac{1}{2}x+\frac{1}{4}=\frac{1}{4}x+\frac{1}{4}\times 6
Use the distributive property to multiply \frac{1}{4} by x+6.
\frac{1}{2}x+\frac{1}{4}=\frac{1}{4}x+\frac{6}{4}
Multiply \frac{1}{4} and 6 to get \frac{6}{4}.
\frac{1}{2}x+\frac{1}{4}=\frac{1}{4}x+\frac{3}{2}
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}x=\frac{3}{2}
Subtract \frac{1}{4}x from both sides.
\frac{1}{4}x+\frac{1}{4}=\frac{3}{2}
Combine \frac{1}{2}x and -\frac{1}{4}x to get \frac{1}{4}x.
\frac{1}{4}x=\frac{3}{2}-\frac{1}{4}
Subtract \frac{1}{4} from both sides.
\frac{1}{4}x=\frac{6}{4}-\frac{1}{4}
Least common multiple of 2 and 4 is 4. Convert \frac{3}{2} and \frac{1}{4} to fractions with denominator 4.
\frac{1}{4}x=\frac{6-1}{4}
Since \frac{6}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{4}x=\frac{5}{4}
Subtract 1 from 6 to get 5.
x=\frac{5}{4}\times 4
Multiply both sides by 4, the reciprocal of \frac{1}{4}.
x=5
Cancel out 4 and 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}