Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{3}{4}\left(x-1\right)-\frac{25}{100}\left(x-4\right)=\frac{25}{100}\left(x+6\right)
Reduce the fraction \frac{75}{100} to lowest terms by extracting and canceling out 25.
\frac{3}{4}x+\frac{3}{4}\left(-1\right)-\frac{25}{100}\left(x-4\right)=\frac{25}{100}\left(x+6\right)
Use the distributive property to multiply \frac{3}{4} by x-1.
\frac{3}{4}x-\frac{3}{4}-\frac{25}{100}\left(x-4\right)=\frac{25}{100}\left(x+6\right)
Multiply \frac{3}{4} and -1 to get -\frac{3}{4}.
\frac{3}{4}x-\frac{3}{4}-\frac{1}{4}\left(x-4\right)=\frac{25}{100}\left(x+6\right)
Reduce the fraction \frac{25}{100} to lowest terms by extracting and canceling out 25.
\frac{3}{4}x-\frac{3}{4}-\frac{1}{4}x-\frac{1}{4}\left(-4\right)=\frac{25}{100}\left(x+6\right)
Use the distributive property to multiply -\frac{1}{4} by x-4.
\frac{3}{4}x-\frac{3}{4}-\frac{1}{4}x+\frac{-\left(-4\right)}{4}=\frac{25}{100}\left(x+6\right)
Express -\frac{1}{4}\left(-4\right) as a single fraction.
\frac{3}{4}x-\frac{3}{4}-\frac{1}{4}x+\frac{4}{4}=\frac{25}{100}\left(x+6\right)
Multiply -1 and -4 to get 4.
\frac{3}{4}x-\frac{3}{4}-\frac{1}{4}x+1=\frac{25}{100}\left(x+6\right)
Divide 4 by 4 to get 1.
\frac{1}{2}x-\frac{3}{4}+1=\frac{25}{100}\left(x+6\right)
Combine \frac{3}{4}x and -\frac{1}{4}x to get \frac{1}{2}x.
\frac{1}{2}x-\frac{3}{4}+\frac{4}{4}=\frac{25}{100}\left(x+6\right)
Convert 1 to fraction \frac{4}{4}.
\frac{1}{2}x+\frac{-3+4}{4}=\frac{25}{100}\left(x+6\right)
Since -\frac{3}{4} and \frac{4}{4} have the same denominator, add them by adding their numerators.
\frac{1}{2}x+\frac{1}{4}=\frac{25}{100}\left(x+6\right)
Add -3 and 4 to get 1.
\frac{1}{2}x+\frac{1}{4}=\frac{1}{4}\left(x+6\right)
Reduce the fraction \frac{25}{100} to lowest terms by extracting and canceling out 25.
\frac{1}{2}x+\frac{1}{4}=\frac{1}{4}x+\frac{1}{4}\times 6
Use the distributive property to multiply \frac{1}{4} by x+6.
\frac{1}{2}x+\frac{1}{4}=\frac{1}{4}x+\frac{6}{4}
Multiply \frac{1}{4} and 6 to get \frac{6}{4}.
\frac{1}{2}x+\frac{1}{4}=\frac{1}{4}x+\frac{3}{2}
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
\frac{1}{2}x+\frac{1}{4}-\frac{1}{4}x=\frac{3}{2}
Subtract \frac{1}{4}x from both sides.
\frac{1}{4}x+\frac{1}{4}=\frac{3}{2}
Combine \frac{1}{2}x and -\frac{1}{4}x to get \frac{1}{4}x.
\frac{1}{4}x=\frac{3}{2}-\frac{1}{4}
Subtract \frac{1}{4} from both sides.
\frac{1}{4}x=\frac{6}{4}-\frac{1}{4}
Least common multiple of 2 and 4 is 4. Convert \frac{3}{2} and \frac{1}{4} to fractions with denominator 4.
\frac{1}{4}x=\frac{6-1}{4}
Since \frac{6}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{4}x=\frac{5}{4}
Subtract 1 from 6 to get 5.
x=\frac{5}{4}\times 4
Multiply both sides by 4, the reciprocal of \frac{1}{4}.
x=5
Cancel out 4 and 4.