Solve for x (complex solution)
x=4+\sqrt{134}i\approx 4+11.575836903i
x=-\sqrt{134}i+4\approx 4-11.575836903i
Graph
Share
Copied to clipboard
4x-\frac{1}{2}x^{2}=75
Swap sides so that all variable terms are on the left hand side.
4x-\frac{1}{2}x^{2}-75=0
Subtract 75 from both sides.
-\frac{1}{2}x^{2}+4x-75=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-4±\sqrt{4^{2}-4\left(-\frac{1}{2}\right)\left(-75\right)}}{2\left(-\frac{1}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{2} for a, 4 for b, and -75 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-\frac{1}{2}\right)\left(-75\right)}}{2\left(-\frac{1}{2}\right)}
Square 4.
x=\frac{-4±\sqrt{16+2\left(-75\right)}}{2\left(-\frac{1}{2}\right)}
Multiply -4 times -\frac{1}{2}.
x=\frac{-4±\sqrt{16-150}}{2\left(-\frac{1}{2}\right)}
Multiply 2 times -75.
x=\frac{-4±\sqrt{-134}}{2\left(-\frac{1}{2}\right)}
Add 16 to -150.
x=\frac{-4±\sqrt{134}i}{2\left(-\frac{1}{2}\right)}
Take the square root of -134.
x=\frac{-4±\sqrt{134}i}{-1}
Multiply 2 times -\frac{1}{2}.
x=\frac{-4+\sqrt{134}i}{-1}
Now solve the equation x=\frac{-4±\sqrt{134}i}{-1} when ± is plus. Add -4 to i\sqrt{134}.
x=-\sqrt{134}i+4
Divide -4+i\sqrt{134} by -1.
x=\frac{-\sqrt{134}i-4}{-1}
Now solve the equation x=\frac{-4±\sqrt{134}i}{-1} when ± is minus. Subtract i\sqrt{134} from -4.
x=4+\sqrt{134}i
Divide -4-i\sqrt{134} by -1.
x=-\sqrt{134}i+4 x=4+\sqrt{134}i
The equation is now solved.
4x-\frac{1}{2}x^{2}=75
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{2}x^{2}+4x=75
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{1}{2}x^{2}+4x}{-\frac{1}{2}}=\frac{75}{-\frac{1}{2}}
Multiply both sides by -2.
x^{2}+\frac{4}{-\frac{1}{2}}x=\frac{75}{-\frac{1}{2}}
Dividing by -\frac{1}{2} undoes the multiplication by -\frac{1}{2}.
x^{2}-8x=\frac{75}{-\frac{1}{2}}
Divide 4 by -\frac{1}{2} by multiplying 4 by the reciprocal of -\frac{1}{2}.
x^{2}-8x=-150
Divide 75 by -\frac{1}{2} by multiplying 75 by the reciprocal of -\frac{1}{2}.
x^{2}-8x+\left(-4\right)^{2}=-150+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=-150+16
Square -4.
x^{2}-8x+16=-134
Add -150 to 16.
\left(x-4\right)^{2}=-134
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{-134}
Take the square root of both sides of the equation.
x-4=\sqrt{134}i x-4=-\sqrt{134}i
Simplify.
x=4+\sqrt{134}i x=-\sqrt{134}i+4
Add 4 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}