Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

75=x^{2}+4x+4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
x^{2}+4x+4=75
Swap sides so that all variable terms are on the left hand side.
x^{2}+4x+4-75=0
Subtract 75 from both sides.
x^{2}+4x-71=0
Subtract 75 from 4 to get -71.
x=\frac{-4±\sqrt{4^{2}-4\left(-71\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 4 for b, and -71 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-4±\sqrt{16-4\left(-71\right)}}{2}
Square 4.
x=\frac{-4±\sqrt{16+284}}{2}
Multiply -4 times -71.
x=\frac{-4±\sqrt{300}}{2}
Add 16 to 284.
x=\frac{-4±10\sqrt{3}}{2}
Take the square root of 300.
x=\frac{10\sqrt{3}-4}{2}
Now solve the equation x=\frac{-4±10\sqrt{3}}{2} when ± is plus. Add -4 to 10\sqrt{3}.
x=5\sqrt{3}-2
Divide -4+10\sqrt{3} by 2.
x=\frac{-10\sqrt{3}-4}{2}
Now solve the equation x=\frac{-4±10\sqrt{3}}{2} when ± is minus. Subtract 10\sqrt{3} from -4.
x=-5\sqrt{3}-2
Divide -4-10\sqrt{3} by 2.
x=5\sqrt{3}-2 x=-5\sqrt{3}-2
The equation is now solved.
75=x^{2}+4x+4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
x^{2}+4x+4=75
Swap sides so that all variable terms are on the left hand side.
\left(x+2\right)^{2}=75
Factor x^{2}+4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+2\right)^{2}}=\sqrt{75}
Take the square root of both sides of the equation.
x+2=5\sqrt{3} x+2=-5\sqrt{3}
Simplify.
x=5\sqrt{3}-2 x=-5\sqrt{3}-2
Subtract 2 from both sides of the equation.