Solve for x
x = \frac{125}{2} = 62\frac{1}{2} = 62.5
Graph
Share
Copied to clipboard
75=x+x\times \frac{2}{10}
Multiply 2 and \frac{1}{10} to get \frac{2}{10}.
75=x+x\times \frac{1}{5}
Reduce the fraction \frac{2}{10} to lowest terms by extracting and canceling out 2.
75=\frac{6}{5}x
Combine x and x\times \frac{1}{5} to get \frac{6}{5}x.
\frac{6}{5}x=75
Swap sides so that all variable terms are on the left hand side.
x=75\times \frac{5}{6}
Multiply both sides by \frac{5}{6}, the reciprocal of \frac{6}{5}.
x=\frac{75\times 5}{6}
Express 75\times \frac{5}{6} as a single fraction.
x=\frac{375}{6}
Multiply 75 and 5 to get 375.
x=\frac{125}{2}
Reduce the fraction \frac{375}{6} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}