Evaluate
\frac{7499}{750}\approx 9.998666667
Factor
\frac{7499}{2 \cdot 3 \cdot 5 ^ {3}} = 9\frac{749}{750} = 9.998666666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{750)}\phantom{1}\\750\overline{)7499}\\\end{array}
Use the 1^{st} digit 7 from dividend 7499
\begin{array}{l}\phantom{750)}0\phantom{2}\\750\overline{)7499}\\\end{array}
Since 7 is less than 750, use the next digit 4 from dividend 7499 and add 0 to the quotient
\begin{array}{l}\phantom{750)}0\phantom{3}\\750\overline{)7499}\\\end{array}
Use the 2^{nd} digit 4 from dividend 7499
\begin{array}{l}\phantom{750)}00\phantom{4}\\750\overline{)7499}\\\end{array}
Since 74 is less than 750, use the next digit 9 from dividend 7499 and add 0 to the quotient
\begin{array}{l}\phantom{750)}00\phantom{5}\\750\overline{)7499}\\\end{array}
Use the 3^{rd} digit 9 from dividend 7499
\begin{array}{l}\phantom{750)}000\phantom{6}\\750\overline{)7499}\\\end{array}
Since 749 is less than 750, use the next digit 9 from dividend 7499 and add 0 to the quotient
\begin{array}{l}\phantom{750)}000\phantom{7}\\750\overline{)7499}\\\end{array}
Use the 4^{th} digit 9 from dividend 7499
\begin{array}{l}\phantom{750)}0009\phantom{8}\\750\overline{)7499}\\\phantom{750)}\underline{\phantom{}6750\phantom{}}\\\phantom{750)9}749\\\end{array}
Find closest multiple of 750 to 7499. We see that 9 \times 750 = 6750 is the nearest. Now subtract 6750 from 7499 to get reminder 749. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }749
Since 749 is less than 750, stop the division. The reminder is 749. The topmost line 0009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}