Evaluate
\frac{373}{12}\approx 31.083333333
Factor
\frac{373}{2 ^ {2} \cdot 3} = 31\frac{1}{12} = 31.083333333333332
Share
Copied to clipboard
\begin{array}{l}\phantom{24)}\phantom{1}\\24\overline{)746}\\\end{array}
Use the 1^{st} digit 7 from dividend 746
\begin{array}{l}\phantom{24)}0\phantom{2}\\24\overline{)746}\\\end{array}
Since 7 is less than 24, use the next digit 4 from dividend 746 and add 0 to the quotient
\begin{array}{l}\phantom{24)}0\phantom{3}\\24\overline{)746}\\\end{array}
Use the 2^{nd} digit 4 from dividend 746
\begin{array}{l}\phantom{24)}03\phantom{4}\\24\overline{)746}\\\phantom{24)}\underline{\phantom{}72\phantom{9}}\\\phantom{24)9}2\\\end{array}
Find closest multiple of 24 to 74. We see that 3 \times 24 = 72 is the nearest. Now subtract 72 from 74 to get reminder 2. Add 3 to quotient.
\begin{array}{l}\phantom{24)}03\phantom{5}\\24\overline{)746}\\\phantom{24)}\underline{\phantom{}72\phantom{9}}\\\phantom{24)9}26\\\end{array}
Use the 3^{rd} digit 6 from dividend 746
\begin{array}{l}\phantom{24)}031\phantom{6}\\24\overline{)746}\\\phantom{24)}\underline{\phantom{}72\phantom{9}}\\\phantom{24)9}26\\\phantom{24)}\underline{\phantom{9}24\phantom{}}\\\phantom{24)99}2\\\end{array}
Find closest multiple of 24 to 26. We see that 1 \times 24 = 24 is the nearest. Now subtract 24 from 26 to get reminder 2. Add 1 to quotient.
\text{Quotient: }31 \text{Reminder: }2
Since 2 is less than 24, stop the division. The reminder is 2. The topmost line 031 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 31.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}