Evaluate
\frac{185}{3}\approx 61.666666667
Factor
\frac{5 \cdot 37}{3} = 61\frac{2}{3} = 61.666666666666664
Share
Copied to clipboard
\begin{array}{l}\phantom{12)}\phantom{1}\\12\overline{)740}\\\end{array}
Use the 1^{st} digit 7 from dividend 740
\begin{array}{l}\phantom{12)}0\phantom{2}\\12\overline{)740}\\\end{array}
Since 7 is less than 12, use the next digit 4 from dividend 740 and add 0 to the quotient
\begin{array}{l}\phantom{12)}0\phantom{3}\\12\overline{)740}\\\end{array}
Use the 2^{nd} digit 4 from dividend 740
\begin{array}{l}\phantom{12)}06\phantom{4}\\12\overline{)740}\\\phantom{12)}\underline{\phantom{}72\phantom{9}}\\\phantom{12)9}2\\\end{array}
Find closest multiple of 12 to 74. We see that 6 \times 12 = 72 is the nearest. Now subtract 72 from 74 to get reminder 2. Add 6 to quotient.
\begin{array}{l}\phantom{12)}06\phantom{5}\\12\overline{)740}\\\phantom{12)}\underline{\phantom{}72\phantom{9}}\\\phantom{12)9}20\\\end{array}
Use the 3^{rd} digit 0 from dividend 740
\begin{array}{l}\phantom{12)}061\phantom{6}\\12\overline{)740}\\\phantom{12)}\underline{\phantom{}72\phantom{9}}\\\phantom{12)9}20\\\phantom{12)}\underline{\phantom{9}12\phantom{}}\\\phantom{12)99}8\\\end{array}
Find closest multiple of 12 to 20. We see that 1 \times 12 = 12 is the nearest. Now subtract 12 from 20 to get reminder 8. Add 1 to quotient.
\text{Quotient: }61 \text{Reminder: }8
Since 8 is less than 12, stop the division. The reminder is 8. The topmost line 061 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 61.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}