Evaluate
\frac{37}{18}\approx 2.055555556
Factor
\frac{37}{2 \cdot 3 ^ {2}} = 2\frac{1}{18} = 2.0555555555555554
Share
Copied to clipboard
\begin{array}{l}\phantom{36)}\phantom{1}\\36\overline{)74}\\\end{array}
Use the 1^{st} digit 7 from dividend 74
\begin{array}{l}\phantom{36)}0\phantom{2}\\36\overline{)74}\\\end{array}
Since 7 is less than 36, use the next digit 4 from dividend 74 and add 0 to the quotient
\begin{array}{l}\phantom{36)}0\phantom{3}\\36\overline{)74}\\\end{array}
Use the 2^{nd} digit 4 from dividend 74
\begin{array}{l}\phantom{36)}02\phantom{4}\\36\overline{)74}\\\phantom{36)}\underline{\phantom{}72\phantom{}}\\\phantom{36)9}2\\\end{array}
Find closest multiple of 36 to 74. We see that 2 \times 36 = 72 is the nearest. Now subtract 72 from 74 to get reminder 2. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }2
Since 2 is less than 36, stop the division. The reminder is 2. The topmost line 02 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}