Evaluate
32
Factor
2^{5}
Share
Copied to clipboard
\begin{array}{l}\phantom{23)}\phantom{1}\\23\overline{)736}\\\end{array}
Use the 1^{st} digit 7 from dividend 736
\begin{array}{l}\phantom{23)}0\phantom{2}\\23\overline{)736}\\\end{array}
Since 7 is less than 23, use the next digit 3 from dividend 736 and add 0 to the quotient
\begin{array}{l}\phantom{23)}0\phantom{3}\\23\overline{)736}\\\end{array}
Use the 2^{nd} digit 3 from dividend 736
\begin{array}{l}\phantom{23)}03\phantom{4}\\23\overline{)736}\\\phantom{23)}\underline{\phantom{}69\phantom{9}}\\\phantom{23)9}4\\\end{array}
Find closest multiple of 23 to 73. We see that 3 \times 23 = 69 is the nearest. Now subtract 69 from 73 to get reminder 4. Add 3 to quotient.
\begin{array}{l}\phantom{23)}03\phantom{5}\\23\overline{)736}\\\phantom{23)}\underline{\phantom{}69\phantom{9}}\\\phantom{23)9}46\\\end{array}
Use the 3^{rd} digit 6 from dividend 736
\begin{array}{l}\phantom{23)}032\phantom{6}\\23\overline{)736}\\\phantom{23)}\underline{\phantom{}69\phantom{9}}\\\phantom{23)9}46\\\phantom{23)}\underline{\phantom{9}46\phantom{}}\\\phantom{23)999}0\\\end{array}
Find closest multiple of 23 to 46. We see that 2 \times 23 = 46 is the nearest. Now subtract 46 from 46 to get reminder 0. Add 2 to quotient.
\text{Quotient: }32 \text{Reminder: }0
Since 0 is less than 23, stop the division. The reminder is 0. The topmost line 032 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 32.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}