Evaluate
4869
Factor
3^{2}\times 541
Share
Copied to clipboard
\begin{array}{l}\phantom{15)}\phantom{1}\\15\overline{)73035}\\\end{array}
Use the 1^{st} digit 7 from dividend 73035
\begin{array}{l}\phantom{15)}0\phantom{2}\\15\overline{)73035}\\\end{array}
Since 7 is less than 15, use the next digit 3 from dividend 73035 and add 0 to the quotient
\begin{array}{l}\phantom{15)}0\phantom{3}\\15\overline{)73035}\\\end{array}
Use the 2^{nd} digit 3 from dividend 73035
\begin{array}{l}\phantom{15)}04\phantom{4}\\15\overline{)73035}\\\phantom{15)}\underline{\phantom{}60\phantom{999}}\\\phantom{15)}13\\\end{array}
Find closest multiple of 15 to 73. We see that 4 \times 15 = 60 is the nearest. Now subtract 60 from 73 to get reminder 13. Add 4 to quotient.
\begin{array}{l}\phantom{15)}04\phantom{5}\\15\overline{)73035}\\\phantom{15)}\underline{\phantom{}60\phantom{999}}\\\phantom{15)}130\\\end{array}
Use the 3^{rd} digit 0 from dividend 73035
\begin{array}{l}\phantom{15)}048\phantom{6}\\15\overline{)73035}\\\phantom{15)}\underline{\phantom{}60\phantom{999}}\\\phantom{15)}130\\\phantom{15)}\underline{\phantom{}120\phantom{99}}\\\phantom{15)9}10\\\end{array}
Find closest multiple of 15 to 130. We see that 8 \times 15 = 120 is the nearest. Now subtract 120 from 130 to get reminder 10. Add 8 to quotient.
\begin{array}{l}\phantom{15)}048\phantom{7}\\15\overline{)73035}\\\phantom{15)}\underline{\phantom{}60\phantom{999}}\\\phantom{15)}130\\\phantom{15)}\underline{\phantom{}120\phantom{99}}\\\phantom{15)9}103\\\end{array}
Use the 4^{th} digit 3 from dividend 73035
\begin{array}{l}\phantom{15)}0486\phantom{8}\\15\overline{)73035}\\\phantom{15)}\underline{\phantom{}60\phantom{999}}\\\phantom{15)}130\\\phantom{15)}\underline{\phantom{}120\phantom{99}}\\\phantom{15)9}103\\\phantom{15)}\underline{\phantom{99}90\phantom{9}}\\\phantom{15)99}13\\\end{array}
Find closest multiple of 15 to 103. We see that 6 \times 15 = 90 is the nearest. Now subtract 90 from 103 to get reminder 13. Add 6 to quotient.
\begin{array}{l}\phantom{15)}0486\phantom{9}\\15\overline{)73035}\\\phantom{15)}\underline{\phantom{}60\phantom{999}}\\\phantom{15)}130\\\phantom{15)}\underline{\phantom{}120\phantom{99}}\\\phantom{15)9}103\\\phantom{15)}\underline{\phantom{99}90\phantom{9}}\\\phantom{15)99}135\\\end{array}
Use the 5^{th} digit 5 from dividend 73035
\begin{array}{l}\phantom{15)}04869\phantom{10}\\15\overline{)73035}\\\phantom{15)}\underline{\phantom{}60\phantom{999}}\\\phantom{15)}130\\\phantom{15)}\underline{\phantom{}120\phantom{99}}\\\phantom{15)9}103\\\phantom{15)}\underline{\phantom{99}90\phantom{9}}\\\phantom{15)99}135\\\phantom{15)}\underline{\phantom{99}135\phantom{}}\\\phantom{15)99999}0\\\end{array}
Find closest multiple of 15 to 135. We see that 9 \times 15 = 135 is the nearest. Now subtract 135 from 135 to get reminder 0. Add 9 to quotient.
\text{Quotient: }4869 \text{Reminder: }0
Since 0 is less than 15, stop the division. The reminder is 0. The topmost line 04869 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4869.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}