Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

73x^{2}-5x-2-82x^{2}=0
Subtract 82x^{2} from both sides.
-9x^{2}-5x-2=0
Combine 73x^{2} and -82x^{2} to get -9x^{2}.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-9\right)\left(-2\right)}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, -5 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-9\right)\left(-2\right)}}{2\left(-9\right)}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25+36\left(-2\right)}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-\left(-5\right)±\sqrt{25-72}}{2\left(-9\right)}
Multiply 36 times -2.
x=\frac{-\left(-5\right)±\sqrt{-47}}{2\left(-9\right)}
Add 25 to -72.
x=\frac{-\left(-5\right)±\sqrt{47}i}{2\left(-9\right)}
Take the square root of -47.
x=\frac{5±\sqrt{47}i}{2\left(-9\right)}
The opposite of -5 is 5.
x=\frac{5±\sqrt{47}i}{-18}
Multiply 2 times -9.
x=\frac{5+\sqrt{47}i}{-18}
Now solve the equation x=\frac{5±\sqrt{47}i}{-18} when ± is plus. Add 5 to i\sqrt{47}.
x=\frac{-\sqrt{47}i-5}{18}
Divide 5+i\sqrt{47} by -18.
x=\frac{-\sqrt{47}i+5}{-18}
Now solve the equation x=\frac{5±\sqrt{47}i}{-18} when ± is minus. Subtract i\sqrt{47} from 5.
x=\frac{-5+\sqrt{47}i}{18}
Divide 5-i\sqrt{47} by -18.
x=\frac{-\sqrt{47}i-5}{18} x=\frac{-5+\sqrt{47}i}{18}
The equation is now solved.
73x^{2}-5x-2-82x^{2}=0
Subtract 82x^{2} from both sides.
-9x^{2}-5x-2=0
Combine 73x^{2} and -82x^{2} to get -9x^{2}.
-9x^{2}-5x=2
Add 2 to both sides. Anything plus zero gives itself.
\frac{-9x^{2}-5x}{-9}=\frac{2}{-9}
Divide both sides by -9.
x^{2}+\left(-\frac{5}{-9}\right)x=\frac{2}{-9}
Dividing by -9 undoes the multiplication by -9.
x^{2}+\frac{5}{9}x=\frac{2}{-9}
Divide -5 by -9.
x^{2}+\frac{5}{9}x=-\frac{2}{9}
Divide 2 by -9.
x^{2}+\frac{5}{9}x+\left(\frac{5}{18}\right)^{2}=-\frac{2}{9}+\left(\frac{5}{18}\right)^{2}
Divide \frac{5}{9}, the coefficient of the x term, by 2 to get \frac{5}{18}. Then add the square of \frac{5}{18} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5}{9}x+\frac{25}{324}=-\frac{2}{9}+\frac{25}{324}
Square \frac{5}{18} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{5}{9}x+\frac{25}{324}=-\frac{47}{324}
Add -\frac{2}{9} to \frac{25}{324} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{18}\right)^{2}=-\frac{47}{324}
Factor x^{2}+\frac{5}{9}x+\frac{25}{324}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{18}\right)^{2}}=\sqrt{-\frac{47}{324}}
Take the square root of both sides of the equation.
x+\frac{5}{18}=\frac{\sqrt{47}i}{18} x+\frac{5}{18}=-\frac{\sqrt{47}i}{18}
Simplify.
x=\frac{-5+\sqrt{47}i}{18} x=\frac{-\sqrt{47}i-5}{18}
Subtract \frac{5}{18} from both sides of the equation.