Factor
\left(y-3\right)\left(y+3\right)\left(-y^{2}+3y-9\right)\left(y^{2}+3y+9\right)
Evaluate
\left(9-y^{2}\right)\left(\left(y^{2}+9\right)^{2}-9y^{2}\right)
Graph
Share
Copied to clipboard
\left(27+y^{3}\right)\left(27-y^{3}\right)
Rewrite 729-y^{6} as 27^{2}-\left(-y^{3}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(y^{3}+27\right)\left(-y^{3}+27\right)
Reorder the terms.
\left(y+3\right)\left(y^{2}-3y+9\right)
Consider y^{3}+27. Rewrite y^{3}+27 as y^{3}+3^{3}. The sum of cubes can be factored using the rule: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
\left(y-3\right)\left(-y^{2}-3y-9\right)
Consider -y^{3}+27. By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 27 and q divides the leading coefficient -1. One such root is 3. Factor the polynomial by dividing it by y-3.
\left(-y^{2}-3y-9\right)\left(y-3\right)\left(y+3\right)\left(y^{2}-3y+9\right)
Rewrite the complete factored expression. The following polynomials are not factored since they do not have any rational roots: -y^{2}-3y-9,y^{2}-3y+9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}