Evaluate
\frac{453}{115}\approx 3.939130435
Factor
\frac{3 \cdot 151}{5 \cdot 23} = 3\frac{108}{115} = 3.9391304347826086
Share
Copied to clipboard
\begin{array}{l}\phantom{1840)}\phantom{1}\\1840\overline{)7248}\\\end{array}
Use the 1^{st} digit 7 from dividend 7248
\begin{array}{l}\phantom{1840)}0\phantom{2}\\1840\overline{)7248}\\\end{array}
Since 7 is less than 1840, use the next digit 2 from dividend 7248 and add 0 to the quotient
\begin{array}{l}\phantom{1840)}0\phantom{3}\\1840\overline{)7248}\\\end{array}
Use the 2^{nd} digit 2 from dividend 7248
\begin{array}{l}\phantom{1840)}00\phantom{4}\\1840\overline{)7248}\\\end{array}
Since 72 is less than 1840, use the next digit 4 from dividend 7248 and add 0 to the quotient
\begin{array}{l}\phantom{1840)}00\phantom{5}\\1840\overline{)7248}\\\end{array}
Use the 3^{rd} digit 4 from dividend 7248
\begin{array}{l}\phantom{1840)}000\phantom{6}\\1840\overline{)7248}\\\end{array}
Since 724 is less than 1840, use the next digit 8 from dividend 7248 and add 0 to the quotient
\begin{array}{l}\phantom{1840)}000\phantom{7}\\1840\overline{)7248}\\\end{array}
Use the 4^{th} digit 8 from dividend 7248
\begin{array}{l}\phantom{1840)}0003\phantom{8}\\1840\overline{)7248}\\\phantom{1840)}\underline{\phantom{}5520\phantom{}}\\\phantom{1840)}1728\\\end{array}
Find closest multiple of 1840 to 7248. We see that 3 \times 1840 = 5520 is the nearest. Now subtract 5520 from 7248 to get reminder 1728. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }1728
Since 1728 is less than 1840, stop the division. The reminder is 1728. The topmost line 0003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}