Evaluate
\frac{724}{625}=1.1584
Factor
\frac{2 ^ {2} \cdot 181}{5 ^ {4}} = 1\frac{99}{625} = 1.1584
Share
Copied to clipboard
\begin{array}{l}\phantom{625)}\phantom{1}\\625\overline{)724}\\\end{array}
Use the 1^{st} digit 7 from dividend 724
\begin{array}{l}\phantom{625)}0\phantom{2}\\625\overline{)724}\\\end{array}
Since 7 is less than 625, use the next digit 2 from dividend 724 and add 0 to the quotient
\begin{array}{l}\phantom{625)}0\phantom{3}\\625\overline{)724}\\\end{array}
Use the 2^{nd} digit 2 from dividend 724
\begin{array}{l}\phantom{625)}00\phantom{4}\\625\overline{)724}\\\end{array}
Since 72 is less than 625, use the next digit 4 from dividend 724 and add 0 to the quotient
\begin{array}{l}\phantom{625)}00\phantom{5}\\625\overline{)724}\\\end{array}
Use the 3^{rd} digit 4 from dividend 724
\begin{array}{l}\phantom{625)}001\phantom{6}\\625\overline{)724}\\\phantom{625)}\underline{\phantom{}625\phantom{}}\\\phantom{625)9}99\\\end{array}
Find closest multiple of 625 to 724. We see that 1 \times 625 = 625 is the nearest. Now subtract 625 from 724 to get reminder 99. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }99
Since 99 is less than 625, stop the division. The reminder is 99. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}