Evaluate
\frac{722}{39}\approx 18.512820513
Factor
\frac{2 \cdot 19 ^ {2}}{3 \cdot 13} = 18\frac{20}{39} = 18.512820512820515
Share
Copied to clipboard
\begin{array}{l}\phantom{39)}\phantom{1}\\39\overline{)722}\\\end{array}
Use the 1^{st} digit 7 from dividend 722
\begin{array}{l}\phantom{39)}0\phantom{2}\\39\overline{)722}\\\end{array}
Since 7 is less than 39, use the next digit 2 from dividend 722 and add 0 to the quotient
\begin{array}{l}\phantom{39)}0\phantom{3}\\39\overline{)722}\\\end{array}
Use the 2^{nd} digit 2 from dividend 722
\begin{array}{l}\phantom{39)}01\phantom{4}\\39\overline{)722}\\\phantom{39)}\underline{\phantom{}39\phantom{9}}\\\phantom{39)}33\\\end{array}
Find closest multiple of 39 to 72. We see that 1 \times 39 = 39 is the nearest. Now subtract 39 from 72 to get reminder 33. Add 1 to quotient.
\begin{array}{l}\phantom{39)}01\phantom{5}\\39\overline{)722}\\\phantom{39)}\underline{\phantom{}39\phantom{9}}\\\phantom{39)}332\\\end{array}
Use the 3^{rd} digit 2 from dividend 722
\begin{array}{l}\phantom{39)}018\phantom{6}\\39\overline{)722}\\\phantom{39)}\underline{\phantom{}39\phantom{9}}\\\phantom{39)}332\\\phantom{39)}\underline{\phantom{}312\phantom{}}\\\phantom{39)9}20\\\end{array}
Find closest multiple of 39 to 332. We see that 8 \times 39 = 312 is the nearest. Now subtract 312 from 332 to get reminder 20. Add 8 to quotient.
\text{Quotient: }18 \text{Reminder: }20
Since 20 is less than 39, stop the division. The reminder is 20. The topmost line 018 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 18.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}