Solve for x
x = \frac{4 \sqrt{109} + 36}{7} \approx 11.108746577
x=\frac{36-4\sqrt{109}}{7}\approx -0.823032291
Graph
Share
Copied to clipboard
-7x^{2}+72x+64=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-72±\sqrt{72^{2}-4\left(-7\right)\times 64}}{2\left(-7\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -7 for a, 72 for b, and 64 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-72±\sqrt{5184-4\left(-7\right)\times 64}}{2\left(-7\right)}
Square 72.
x=\frac{-72±\sqrt{5184+28\times 64}}{2\left(-7\right)}
Multiply -4 times -7.
x=\frac{-72±\sqrt{5184+1792}}{2\left(-7\right)}
Multiply 28 times 64.
x=\frac{-72±\sqrt{6976}}{2\left(-7\right)}
Add 5184 to 1792.
x=\frac{-72±8\sqrt{109}}{2\left(-7\right)}
Take the square root of 6976.
x=\frac{-72±8\sqrt{109}}{-14}
Multiply 2 times -7.
x=\frac{8\sqrt{109}-72}{-14}
Now solve the equation x=\frac{-72±8\sqrt{109}}{-14} when ± is plus. Add -72 to 8\sqrt{109}.
x=\frac{36-4\sqrt{109}}{7}
Divide -72+8\sqrt{109} by -14.
x=\frac{-8\sqrt{109}-72}{-14}
Now solve the equation x=\frac{-72±8\sqrt{109}}{-14} when ± is minus. Subtract 8\sqrt{109} from -72.
x=\frac{4\sqrt{109}+36}{7}
Divide -72-8\sqrt{109} by -14.
x=\frac{36-4\sqrt{109}}{7} x=\frac{4\sqrt{109}+36}{7}
The equation is now solved.
-7x^{2}+72x+64=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-7x^{2}+72x+64-64=-64
Subtract 64 from both sides of the equation.
-7x^{2}+72x=-64
Subtracting 64 from itself leaves 0.
\frac{-7x^{2}+72x}{-7}=-\frac{64}{-7}
Divide both sides by -7.
x^{2}+\frac{72}{-7}x=-\frac{64}{-7}
Dividing by -7 undoes the multiplication by -7.
x^{2}-\frac{72}{7}x=-\frac{64}{-7}
Divide 72 by -7.
x^{2}-\frac{72}{7}x=\frac{64}{7}
Divide -64 by -7.
x^{2}-\frac{72}{7}x+\left(-\frac{36}{7}\right)^{2}=\frac{64}{7}+\left(-\frac{36}{7}\right)^{2}
Divide -\frac{72}{7}, the coefficient of the x term, by 2 to get -\frac{36}{7}. Then add the square of -\frac{36}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{72}{7}x+\frac{1296}{49}=\frac{64}{7}+\frac{1296}{49}
Square -\frac{36}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{72}{7}x+\frac{1296}{49}=\frac{1744}{49}
Add \frac{64}{7} to \frac{1296}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{36}{7}\right)^{2}=\frac{1744}{49}
Factor x^{2}-\frac{72}{7}x+\frac{1296}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{36}{7}\right)^{2}}=\sqrt{\frac{1744}{49}}
Take the square root of both sides of the equation.
x-\frac{36}{7}=\frac{4\sqrt{109}}{7} x-\frac{36}{7}=-\frac{4\sqrt{109}}{7}
Simplify.
x=\frac{4\sqrt{109}+36}{7} x=\frac{36-4\sqrt{109}}{7}
Add \frac{36}{7} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}