Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

12\left(6x-x^{2}\right)
Factor out 12.
x\left(6-x\right)
Consider 6x-x^{2}. Factor out x.
12x\left(-x+6\right)
Rewrite the complete factored expression.
-12x^{2}+72x=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-72±\sqrt{72^{2}}}{2\left(-12\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-72±72}{2\left(-12\right)}
Take the square root of 72^{2}.
x=\frac{-72±72}{-24}
Multiply 2 times -12.
x=\frac{0}{-24}
Now solve the equation x=\frac{-72±72}{-24} when ± is plus. Add -72 to 72.
x=0
Divide 0 by -24.
x=-\frac{144}{-24}
Now solve the equation x=\frac{-72±72}{-24} when ± is minus. Subtract 72 from -72.
x=6
Divide -144 by -24.
-12x^{2}+72x=-12x\left(x-6\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and 6 for x_{2}.