Solve for x
x=\frac{\sqrt{2041}-5}{144}\approx 0.279009917
x=\frac{-\sqrt{2041}-5}{144}\approx -0.348454361
Graph
Share
Copied to clipboard
72x^{2}+5x-5=2
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
72x^{2}+5x-5-2=2-2
Subtract 2 from both sides of the equation.
72x^{2}+5x-5-2=0
Subtracting 2 from itself leaves 0.
72x^{2}+5x-7=0
Subtract 2 from -5.
x=\frac{-5±\sqrt{5^{2}-4\times 72\left(-7\right)}}{2\times 72}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 72 for a, 5 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 72\left(-7\right)}}{2\times 72}
Square 5.
x=\frac{-5±\sqrt{25-288\left(-7\right)}}{2\times 72}
Multiply -4 times 72.
x=\frac{-5±\sqrt{25+2016}}{2\times 72}
Multiply -288 times -7.
x=\frac{-5±\sqrt{2041}}{2\times 72}
Add 25 to 2016.
x=\frac{-5±\sqrt{2041}}{144}
Multiply 2 times 72.
x=\frac{\sqrt{2041}-5}{144}
Now solve the equation x=\frac{-5±\sqrt{2041}}{144} when ± is plus. Add -5 to \sqrt{2041}.
x=\frac{-\sqrt{2041}-5}{144}
Now solve the equation x=\frac{-5±\sqrt{2041}}{144} when ± is minus. Subtract \sqrt{2041} from -5.
x=\frac{\sqrt{2041}-5}{144} x=\frac{-\sqrt{2041}-5}{144}
The equation is now solved.
72x^{2}+5x-5=2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
72x^{2}+5x-5-\left(-5\right)=2-\left(-5\right)
Add 5 to both sides of the equation.
72x^{2}+5x=2-\left(-5\right)
Subtracting -5 from itself leaves 0.
72x^{2}+5x=7
Subtract -5 from 2.
\frac{72x^{2}+5x}{72}=\frac{7}{72}
Divide both sides by 72.
x^{2}+\frac{5}{72}x=\frac{7}{72}
Dividing by 72 undoes the multiplication by 72.
x^{2}+\frac{5}{72}x+\left(\frac{5}{144}\right)^{2}=\frac{7}{72}+\left(\frac{5}{144}\right)^{2}
Divide \frac{5}{72}, the coefficient of the x term, by 2 to get \frac{5}{144}. Then add the square of \frac{5}{144} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{5}{72}x+\frac{25}{20736}=\frac{7}{72}+\frac{25}{20736}
Square \frac{5}{144} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{5}{72}x+\frac{25}{20736}=\frac{2041}{20736}
Add \frac{7}{72} to \frac{25}{20736} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{5}{144}\right)^{2}=\frac{2041}{20736}
Factor x^{2}+\frac{5}{72}x+\frac{25}{20736}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{144}\right)^{2}}=\sqrt{\frac{2041}{20736}}
Take the square root of both sides of the equation.
x+\frac{5}{144}=\frac{\sqrt{2041}}{144} x+\frac{5}{144}=-\frac{\sqrt{2041}}{144}
Simplify.
x=\frac{\sqrt{2041}-5}{144} x=\frac{-\sqrt{2041}-5}{144}
Subtract \frac{5}{144} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}