Solve for x
x = \frac{\sqrt{857} + 9}{2} \approx 19.137281168
x=\frac{9-\sqrt{857}}{2}\approx -10.137281168
Graph
Share
Copied to clipboard
72x-8x^{2}=-1552
Subtract 8x^{2} from both sides.
72x-8x^{2}+1552=0
Add 1552 to both sides.
-8x^{2}+72x+1552=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-72±\sqrt{72^{2}-4\left(-8\right)\times 1552}}{2\left(-8\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -8 for a, 72 for b, and 1552 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-72±\sqrt{5184-4\left(-8\right)\times 1552}}{2\left(-8\right)}
Square 72.
x=\frac{-72±\sqrt{5184+32\times 1552}}{2\left(-8\right)}
Multiply -4 times -8.
x=\frac{-72±\sqrt{5184+49664}}{2\left(-8\right)}
Multiply 32 times 1552.
x=\frac{-72±\sqrt{54848}}{2\left(-8\right)}
Add 5184 to 49664.
x=\frac{-72±8\sqrt{857}}{2\left(-8\right)}
Take the square root of 54848.
x=\frac{-72±8\sqrt{857}}{-16}
Multiply 2 times -8.
x=\frac{8\sqrt{857}-72}{-16}
Now solve the equation x=\frac{-72±8\sqrt{857}}{-16} when ± is plus. Add -72 to 8\sqrt{857}.
x=\frac{9-\sqrt{857}}{2}
Divide -72+8\sqrt{857} by -16.
x=\frac{-8\sqrt{857}-72}{-16}
Now solve the equation x=\frac{-72±8\sqrt{857}}{-16} when ± is minus. Subtract 8\sqrt{857} from -72.
x=\frac{\sqrt{857}+9}{2}
Divide -72-8\sqrt{857} by -16.
x=\frac{9-\sqrt{857}}{2} x=\frac{\sqrt{857}+9}{2}
The equation is now solved.
72x-8x^{2}=-1552
Subtract 8x^{2} from both sides.
-8x^{2}+72x=-1552
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-8x^{2}+72x}{-8}=-\frac{1552}{-8}
Divide both sides by -8.
x^{2}+\frac{72}{-8}x=-\frac{1552}{-8}
Dividing by -8 undoes the multiplication by -8.
x^{2}-9x=-\frac{1552}{-8}
Divide 72 by -8.
x^{2}-9x=194
Divide -1552 by -8.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=194+\left(-\frac{9}{2}\right)^{2}
Divide -9, the coefficient of the x term, by 2 to get -\frac{9}{2}. Then add the square of -\frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-9x+\frac{81}{4}=194+\frac{81}{4}
Square -\frac{9}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-9x+\frac{81}{4}=\frac{857}{4}
Add 194 to \frac{81}{4}.
\left(x-\frac{9}{2}\right)^{2}=\frac{857}{4}
Factor x^{2}-9x+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{857}{4}}
Take the square root of both sides of the equation.
x-\frac{9}{2}=\frac{\sqrt{857}}{2} x-\frac{9}{2}=-\frac{\sqrt{857}}{2}
Simplify.
x=\frac{\sqrt{857}+9}{2} x=\frac{9-\sqrt{857}}{2}
Add \frac{9}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}