Solve for x
x = \frac{849}{292} = 2\frac{265}{292} \approx 2.907534247
Graph
Share
Copied to clipboard
73x+48-\frac{15}{60}=360-100
Combine 72x and x to get 73x.
73x+48-\frac{1}{4}=360-100
Reduce the fraction \frac{15}{60} to lowest terms by extracting and canceling out 15.
73x+\frac{192}{4}-\frac{1}{4}=360-100
Convert 48 to fraction \frac{192}{4}.
73x+\frac{192-1}{4}=360-100
Since \frac{192}{4} and \frac{1}{4} have the same denominator, subtract them by subtracting their numerators.
73x+\frac{191}{4}=360-100
Subtract 1 from 192 to get 191.
73x+\frac{191}{4}=260
Subtract 100 from 360 to get 260.
73x=260-\frac{191}{4}
Subtract \frac{191}{4} from both sides.
73x=\frac{1040}{4}-\frac{191}{4}
Convert 260 to fraction \frac{1040}{4}.
73x=\frac{1040-191}{4}
Since \frac{1040}{4} and \frac{191}{4} have the same denominator, subtract them by subtracting their numerators.
73x=\frac{849}{4}
Subtract 191 from 1040 to get 849.
x=\frac{\frac{849}{4}}{73}
Divide both sides by 73.
x=\frac{849}{4\times 73}
Express \frac{\frac{849}{4}}{73} as a single fraction.
x=\frac{849}{292}
Multiply 4 and 73 to get 292.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}