Solve for x
x = \frac{134835843854}{41} = 3288679118\frac{16}{41} \approx 3288679118.390243902
Graph
Quiz
Linear Equation
5 problems similar to:
72 - ( 85 ^ { 2 } \times 720 ^ { 3 } ) \div ( - 820 ) + 22 = x
Share
Copied to clipboard
72-\frac{7225\times 720^{3}}{-820}+22=x
Calculate 85 to the power of 2 and get 7225.
72-\frac{7225\times 373248000}{-820}+22=x
Calculate 720 to the power of 3 and get 373248000.
72-\frac{2696716800000}{-820}+22=x
Multiply 7225 and 373248000 to get 2696716800000.
72-\left(-\frac{134835840000}{41}\right)+22=x
Reduce the fraction \frac{2696716800000}{-820} to lowest terms by extracting and canceling out 20.
72+\frac{134835840000}{41}+22=x
The opposite of -\frac{134835840000}{41} is \frac{134835840000}{41}.
\frac{2952}{41}+\frac{134835840000}{41}+22=x
Convert 72 to fraction \frac{2952}{41}.
\frac{2952+134835840000}{41}+22=x
Since \frac{2952}{41} and \frac{134835840000}{41} have the same denominator, add them by adding their numerators.
\frac{134835842952}{41}+22=x
Add 2952 and 134835840000 to get 134835842952.
\frac{134835842952}{41}+\frac{902}{41}=x
Convert 22 to fraction \frac{902}{41}.
\frac{134835842952+902}{41}=x
Since \frac{134835842952}{41} and \frac{902}{41} have the same denominator, add them by adding their numerators.
\frac{134835843854}{41}=x
Add 134835842952 and 902 to get 134835843854.
x=\frac{134835843854}{41}
Swap sides so that all variable terms are on the left hand side.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}