Solve for x
x=\frac{5}{6}\approx 0.833333333
x=-\frac{5}{6}\approx -0.833333333
Graph
Share
Copied to clipboard
36x^{2}-25=0
Divide both sides by 2.
\left(6x-5\right)\left(6x+5\right)=0
Consider 36x^{2}-25. Rewrite 36x^{2}-25 as \left(6x\right)^{2}-5^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{5}{6} x=-\frac{5}{6}
To find equation solutions, solve 6x-5=0 and 6x+5=0.
72x^{2}=50
Add 50 to both sides. Anything plus zero gives itself.
x^{2}=\frac{50}{72}
Divide both sides by 72.
x^{2}=\frac{25}{36}
Reduce the fraction \frac{50}{72} to lowest terms by extracting and canceling out 2.
x=\frac{5}{6} x=-\frac{5}{6}
Take the square root of both sides of the equation.
72x^{2}-50=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 72\left(-50\right)}}{2\times 72}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 72 for a, 0 for b, and -50 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 72\left(-50\right)}}{2\times 72}
Square 0.
x=\frac{0±\sqrt{-288\left(-50\right)}}{2\times 72}
Multiply -4 times 72.
x=\frac{0±\sqrt{14400}}{2\times 72}
Multiply -288 times -50.
x=\frac{0±120}{2\times 72}
Take the square root of 14400.
x=\frac{0±120}{144}
Multiply 2 times 72.
x=\frac{5}{6}
Now solve the equation x=\frac{0±120}{144} when ± is plus. Reduce the fraction \frac{120}{144} to lowest terms by extracting and canceling out 24.
x=-\frac{5}{6}
Now solve the equation x=\frac{0±120}{144} when ± is minus. Reduce the fraction \frac{-120}{144} to lowest terms by extracting and canceling out 24.
x=\frac{5}{6} x=-\frac{5}{6}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}