Solve for m
m=-\frac{4}{9}\approx -0.444444444
Share
Copied to clipboard
5184m^{2}\left(m+1\right)^{2}-64\left(1+9m^{2}\right)\left(9m^{2}+18m+8\right)=0
Calculate 72 to the power of 2 and get 5184.
5184m^{2}\left(m^{2}+2m+1\right)-64\left(1+9m^{2}\right)\left(9m^{2}+18m+8\right)=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(m+1\right)^{2}.
5184m^{4}+10368m^{3}+5184m^{2}-64\left(1+9m^{2}\right)\left(9m^{2}+18m+8\right)=0
Use the distributive property to multiply 5184m^{2} by m^{2}+2m+1.
5184m^{4}+10368m^{3}+5184m^{2}+\left(-64-576m^{2}\right)\left(9m^{2}+18m+8\right)=0
Use the distributive property to multiply -64 by 1+9m^{2}.
5184m^{4}+10368m^{3}+5184m^{2}-5184m^{2}-1152m-512-5184m^{4}-10368m^{3}=0
Use the distributive property to multiply -64-576m^{2} by 9m^{2}+18m+8 and combine like terms.
5184m^{4}+10368m^{3}-1152m-512-5184m^{4}-10368m^{3}=0
Combine 5184m^{2} and -5184m^{2} to get 0.
10368m^{3}-1152m-512-10368m^{3}=0
Combine 5184m^{4} and -5184m^{4} to get 0.
-1152m-512=0
Combine 10368m^{3} and -10368m^{3} to get 0.
-1152m=512
Add 512 to both sides. Anything plus zero gives itself.
m=\frac{512}{-1152}
Divide both sides by -1152.
m=-\frac{4}{9}
Reduce the fraction \frac{512}{-1152} to lowest terms by extracting and canceling out 128.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}