Skip to main content
Solve for h
Tick mark Image

Similar Problems from Web Search

Share

h^{2}+23h=72
Swap sides so that all variable terms are on the left hand side.
h^{2}+23h-72=0
Subtract 72 from both sides.
h=\frac{-23±\sqrt{23^{2}-4\left(-72\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 23 for b, and -72 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
h=\frac{-23±\sqrt{529-4\left(-72\right)}}{2}
Square 23.
h=\frac{-23±\sqrt{529+288}}{2}
Multiply -4 times -72.
h=\frac{-23±\sqrt{817}}{2}
Add 529 to 288.
h=\frac{\sqrt{817}-23}{2}
Now solve the equation h=\frac{-23±\sqrt{817}}{2} when ± is plus. Add -23 to \sqrt{817}.
h=\frac{-\sqrt{817}-23}{2}
Now solve the equation h=\frac{-23±\sqrt{817}}{2} when ± is minus. Subtract \sqrt{817} from -23.
h=\frac{\sqrt{817}-23}{2} h=\frac{-\sqrt{817}-23}{2}
The equation is now solved.
h^{2}+23h=72
Swap sides so that all variable terms are on the left hand side.
h^{2}+23h+\left(\frac{23}{2}\right)^{2}=72+\left(\frac{23}{2}\right)^{2}
Divide 23, the coefficient of the x term, by 2 to get \frac{23}{2}. Then add the square of \frac{23}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
h^{2}+23h+\frac{529}{4}=72+\frac{529}{4}
Square \frac{23}{2} by squaring both the numerator and the denominator of the fraction.
h^{2}+23h+\frac{529}{4}=\frac{817}{4}
Add 72 to \frac{529}{4}.
\left(h+\frac{23}{2}\right)^{2}=\frac{817}{4}
Factor h^{2}+23h+\frac{529}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(h+\frac{23}{2}\right)^{2}}=\sqrt{\frac{817}{4}}
Take the square root of both sides of the equation.
h+\frac{23}{2}=\frac{\sqrt{817}}{2} h+\frac{23}{2}=-\frac{\sqrt{817}}{2}
Simplify.
h=\frac{\sqrt{817}-23}{2} h=\frac{-\sqrt{817}-23}{2}
Subtract \frac{23}{2} from both sides of the equation.