Solve for h
h = \frac{\sqrt{817} - 23}{2} \approx 2.791605928
h=\frac{-\sqrt{817}-23}{2}\approx -25.791605928
Share
Copied to clipboard
h^{2}+23h=72
Swap sides so that all variable terms are on the left hand side.
h^{2}+23h-72=0
Subtract 72 from both sides.
h=\frac{-23±\sqrt{23^{2}-4\left(-72\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 23 for b, and -72 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
h=\frac{-23±\sqrt{529-4\left(-72\right)}}{2}
Square 23.
h=\frac{-23±\sqrt{529+288}}{2}
Multiply -4 times -72.
h=\frac{-23±\sqrt{817}}{2}
Add 529 to 288.
h=\frac{\sqrt{817}-23}{2}
Now solve the equation h=\frac{-23±\sqrt{817}}{2} when ± is plus. Add -23 to \sqrt{817}.
h=\frac{-\sqrt{817}-23}{2}
Now solve the equation h=\frac{-23±\sqrt{817}}{2} when ± is minus. Subtract \sqrt{817} from -23.
h=\frac{\sqrt{817}-23}{2} h=\frac{-\sqrt{817}-23}{2}
The equation is now solved.
h^{2}+23h=72
Swap sides so that all variable terms are on the left hand side.
h^{2}+23h+\left(\frac{23}{2}\right)^{2}=72+\left(\frac{23}{2}\right)^{2}
Divide 23, the coefficient of the x term, by 2 to get \frac{23}{2}. Then add the square of \frac{23}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
h^{2}+23h+\frac{529}{4}=72+\frac{529}{4}
Square \frac{23}{2} by squaring both the numerator and the denominator of the fraction.
h^{2}+23h+\frac{529}{4}=\frac{817}{4}
Add 72 to \frac{529}{4}.
\left(h+\frac{23}{2}\right)^{2}=\frac{817}{4}
Factor h^{2}+23h+\frac{529}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(h+\frac{23}{2}\right)^{2}}=\sqrt{\frac{817}{4}}
Take the square root of both sides of the equation.
h+\frac{23}{2}=\frac{\sqrt{817}}{2} h+\frac{23}{2}=-\frac{\sqrt{817}}{2}
Simplify.
h=\frac{\sqrt{817}-23}{2} h=\frac{-\sqrt{817}-23}{2}
Subtract \frac{23}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}