Solve for y
y = \frac{8}{3} = 2\frac{2}{3} \approx 2.666666667
y = \frac{10}{3} = 3\frac{1}{3} \approx 3.333333333
Graph
Share
Copied to clipboard
72\left(y-3\right)^{2}=8
Variable y cannot be equal to 3 since division by zero is not defined. Multiply both sides of the equation by \left(y-3\right)^{2}.
72\left(y^{2}-6y+9\right)=8
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-3\right)^{2}.
72y^{2}-432y+648=8
Use the distributive property to multiply 72 by y^{2}-6y+9.
72y^{2}-432y+648-8=0
Subtract 8 from both sides.
72y^{2}-432y+640=0
Subtract 8 from 648 to get 640.
y=\frac{-\left(-432\right)±\sqrt{\left(-432\right)^{2}-4\times 72\times 640}}{2\times 72}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 72 for a, -432 for b, and 640 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-432\right)±\sqrt{186624-4\times 72\times 640}}{2\times 72}
Square -432.
y=\frac{-\left(-432\right)±\sqrt{186624-288\times 640}}{2\times 72}
Multiply -4 times 72.
y=\frac{-\left(-432\right)±\sqrt{186624-184320}}{2\times 72}
Multiply -288 times 640.
y=\frac{-\left(-432\right)±\sqrt{2304}}{2\times 72}
Add 186624 to -184320.
y=\frac{-\left(-432\right)±48}{2\times 72}
Take the square root of 2304.
y=\frac{432±48}{2\times 72}
The opposite of -432 is 432.
y=\frac{432±48}{144}
Multiply 2 times 72.
y=\frac{480}{144}
Now solve the equation y=\frac{432±48}{144} when ± is plus. Add 432 to 48.
y=\frac{10}{3}
Reduce the fraction \frac{480}{144} to lowest terms by extracting and canceling out 48.
y=\frac{384}{144}
Now solve the equation y=\frac{432±48}{144} when ± is minus. Subtract 48 from 432.
y=\frac{8}{3}
Reduce the fraction \frac{384}{144} to lowest terms by extracting and canceling out 48.
y=\frac{10}{3} y=\frac{8}{3}
The equation is now solved.
72\left(y-3\right)^{2}=8
Variable y cannot be equal to 3 since division by zero is not defined. Multiply both sides of the equation by \left(y-3\right)^{2}.
72\left(y^{2}-6y+9\right)=8
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(y-3\right)^{2}.
72y^{2}-432y+648=8
Use the distributive property to multiply 72 by y^{2}-6y+9.
72y^{2}-432y=8-648
Subtract 648 from both sides.
72y^{2}-432y=-640
Subtract 648 from 8 to get -640.
\frac{72y^{2}-432y}{72}=-\frac{640}{72}
Divide both sides by 72.
y^{2}+\left(-\frac{432}{72}\right)y=-\frac{640}{72}
Dividing by 72 undoes the multiplication by 72.
y^{2}-6y=-\frac{640}{72}
Divide -432 by 72.
y^{2}-6y=-\frac{80}{9}
Reduce the fraction \frac{-640}{72} to lowest terms by extracting and canceling out 8.
y^{2}-6y+\left(-3\right)^{2}=-\frac{80}{9}+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-6y+9=-\frac{80}{9}+9
Square -3.
y^{2}-6y+9=\frac{1}{9}
Add -\frac{80}{9} to 9.
\left(y-3\right)^{2}=\frac{1}{9}
Factor y^{2}-6y+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-3\right)^{2}}=\sqrt{\frac{1}{9}}
Take the square root of both sides of the equation.
y-3=\frac{1}{3} y-3=-\frac{1}{3}
Simplify.
y=\frac{10}{3} y=\frac{8}{3}
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}