Evaluate
-\frac{70533}{50}=-1410.66
Factor
-\frac{70533}{50} = -1410\frac{33}{50} = -1410.66
Share
Copied to clipboard
\frac{10725+13}{15}-2134+\frac{14\times 15+2}{15}-\frac{6\times 50+33}{50}
Multiply 715 and 15 to get 10725.
\frac{10738}{15}-2134+\frac{14\times 15+2}{15}-\frac{6\times 50+33}{50}
Add 10725 and 13 to get 10738.
\frac{10738}{15}-\frac{32010}{15}+\frac{14\times 15+2}{15}-\frac{6\times 50+33}{50}
Convert 2134 to fraction \frac{32010}{15}.
\frac{10738-32010}{15}+\frac{14\times 15+2}{15}-\frac{6\times 50+33}{50}
Since \frac{10738}{15} and \frac{32010}{15} have the same denominator, subtract them by subtracting their numerators.
-\frac{21272}{15}+\frac{14\times 15+2}{15}-\frac{6\times 50+33}{50}
Subtract 32010 from 10738 to get -21272.
-\frac{21272}{15}+\frac{210+2}{15}-\frac{6\times 50+33}{50}
Multiply 14 and 15 to get 210.
-\frac{21272}{15}+\frac{212}{15}-\frac{6\times 50+33}{50}
Add 210 and 2 to get 212.
\frac{-21272+212}{15}-\frac{6\times 50+33}{50}
Since -\frac{21272}{15} and \frac{212}{15} have the same denominator, add them by adding their numerators.
\frac{-21060}{15}-\frac{6\times 50+33}{50}
Add -21272 and 212 to get -21060.
-1404-\frac{6\times 50+33}{50}
Divide -21060 by 15 to get -1404.
-1404-\frac{300+33}{50}
Multiply 6 and 50 to get 300.
-1404-\frac{333}{50}
Add 300 and 33 to get 333.
-\frac{70200}{50}-\frac{333}{50}
Convert -1404 to fraction -\frac{70200}{50}.
\frac{-70200-333}{50}
Since -\frac{70200}{50} and \frac{333}{50} have the same denominator, subtract them by subtracting their numerators.
-\frac{70533}{50}
Subtract 333 from -70200 to get -70533.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}