Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. x_45182
Tick mark Image

Similar Problems from Web Search

Share

\begin{array}{c}\phantom{\times9}71125425\\\underline{\times\phantom{9999}45182}\\\end{array}
First line up the numbers vertically and match the places from the right like this.
\begin{array}{c}\phantom{\times9}71125425\\\underline{\times\phantom{9999}45182}\\\phantom{\times}142250850\\\end{array}
Now multiply the first number with the 1^{st} digit in 2^{nd} number to get intermediate results. That is Multiply 71125425 with 2. Write the result 142250850 at the end leaving 0 spaces to the right like this.
\begin{array}{c}\phantom{\times9}71125425\\\underline{\times\phantom{9999}45182}\\\phantom{\times}142250850\\\phantom{\times}569003400\phantom{9}\\\end{array}
Now multiply the first number with the 2^{nd} digit in 2^{nd} number to get intermediate results. That is Multiply 71125425 with 8. Write the result 569003400 at the end leaving 1 spaces to the right like this.
\begin{array}{c}\phantom{\times9}71125425\\\underline{\times\phantom{9999}45182}\\\phantom{\times}142250850\\\phantom{\times}569003400\phantom{9}\\\phantom{\times}71125425\phantom{99}\\\end{array}
Now multiply the first number with the 3^{rd} digit in 2^{nd} number to get intermediate results. That is Multiply 71125425 with 1. Write the result 71125425 at the end leaving 2 spaces to the right like this.
\begin{array}{c}\phantom{\times9}71125425\\\underline{\times\phantom{9999}45182}\\\phantom{\times}142250850\\\phantom{\times}569003400\phantom{9}\\\phantom{\times}71125425\phantom{99}\\\phantom{\times}355627125\phantom{999}\\\end{array}
Now multiply the first number with the 4^{th} digit in 2^{nd} number to get intermediate results. That is Multiply 71125425 with 5. Write the result 355627125 at the end leaving 3 spaces to the right like this.
\begin{array}{c}\phantom{\times9}71125425\\\underline{\times\phantom{9999}45182}\\\phantom{\times}142250850\\\phantom{\times}569003400\phantom{9}\\\phantom{\times}71125425\phantom{99}\\\phantom{\times}355627125\phantom{999}\\\underline{\phantom{\times}284501700\phantom{9999}}\\\end{array}
Now multiply the first number with the 5^{th} digit in 2^{nd} number to get intermediate results. That is Multiply 71125425 with 4. Write the result 284501700 at the end leaving 4 spaces to the right like this.
\begin{array}{c}\phantom{\times9}71125425\\\underline{\times\phantom{9999}45182}\\\phantom{\times}142250850\\\phantom{\times}569003400\phantom{9}\\\phantom{\times}71125425\phantom{99}\\\phantom{\times}355627125\phantom{999}\\\underline{\phantom{\times}284501700\phantom{9999}}\\\phantom{\times}953414942\end{array}
Now add the intermediate results to get final answer.
71125425x_{45182}^{1-1}
The derivative of ax^{n} is nax^{n-1}.
71125425x_{45182}^{0}
Subtract 1 from 1.
71125425\times 1
For any term t except 0, t^{0}=1.
71125425
For any term t, t\times 1=t and 1t=t.