Evaluate
-\frac{56644\sqrt{321}}{963}+711\approx -342.853259697
Share
Copied to clipboard
711-196\times \frac{1156}{\sqrt{46224}}
Calculate 34 to the power of 2 and get 1156.
711-196\times \frac{1156}{12\sqrt{321}}
Factor 46224=12^{2}\times 321. Rewrite the square root of the product \sqrt{12^{2}\times 321} as the product of square roots \sqrt{12^{2}}\sqrt{321}. Take the square root of 12^{2}.
711-196\times \frac{1156\sqrt{321}}{12\left(\sqrt{321}\right)^{2}}
Rationalize the denominator of \frac{1156}{12\sqrt{321}} by multiplying numerator and denominator by \sqrt{321}.
711-196\times \frac{1156\sqrt{321}}{12\times 321}
The square of \sqrt{321} is 321.
711-196\times \frac{289\sqrt{321}}{3\times 321}
Cancel out 4 in both numerator and denominator.
711-196\times \frac{289\sqrt{321}}{963}
Multiply 3 and 321 to get 963.
711-\frac{196\times 289\sqrt{321}}{963}
Express 196\times \frac{289\sqrt{321}}{963} as a single fraction.
711-\frac{56644\sqrt{321}}{963}
Multiply 196 and 289 to get 56644.
\frac{711\times 963}{963}-\frac{56644\sqrt{321}}{963}
To add or subtract expressions, expand them to make their denominators the same. Multiply 711 times \frac{963}{963}.
\frac{711\times 963-56644\sqrt{321}}{963}
Since \frac{711\times 963}{963} and \frac{56644\sqrt{321}}{963} have the same denominator, subtract them by subtracting their numerators.
\frac{684693-56644\sqrt{321}}{963}
Do the multiplications in 711\times 963-56644\sqrt{321}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}