Solve for f
f=\frac{7x+32}{213\left(1-x\right)}
x\neq 1
Solve for x
x=\frac{213f-32}{213f+7}
f\neq -\frac{7}{213}
Graph
Share
Copied to clipboard
71f\left(-3x+3\right)=25-\left(-\left(3x+4\right)-\left(4x+3\right)\right)
Combine -5x and 2x to get -3x.
-213fx+213f=25-\left(-\left(3x+4\right)-\left(4x+3\right)\right)
Use the distributive property to multiply 71f by -3x+3.
-213fx+213f=25-\left(-3x-4-\left(4x+3\right)\right)
To find the opposite of 3x+4, find the opposite of each term.
-213fx+213f=25-\left(-3x-4-4x-3\right)
To find the opposite of 4x+3, find the opposite of each term.
-213fx+213f=25-\left(-7x-4-3\right)
Combine -3x and -4x to get -7x.
-213fx+213f=25-\left(-7x-7\right)
Subtract 3 from -4 to get -7.
-213fx+213f=25+7x+7
To find the opposite of -7x-7, find the opposite of each term.
-213fx+213f=32+7x
Add 25 and 7 to get 32.
\left(-213x+213\right)f=32+7x
Combine all terms containing f.
\left(213-213x\right)f=7x+32
The equation is in standard form.
\frac{\left(213-213x\right)f}{213-213x}=\frac{7x+32}{213-213x}
Divide both sides by -213x+213.
f=\frac{7x+32}{213-213x}
Dividing by -213x+213 undoes the multiplication by -213x+213.
f=\frac{7x+32}{213\left(1-x\right)}
Divide 32+7x by -213x+213.
71f\left(-3x+3\right)=25-\left(-\left(3x+4\right)-\left(4x+3\right)\right)
Combine -5x and 2x to get -3x.
-213xf+213f=25-\left(-\left(3x+4\right)-\left(4x+3\right)\right)
Use the distributive property to multiply 71f by -3x+3.
-213xf+213f=25-\left(-3x-4-\left(4x+3\right)\right)
To find the opposite of 3x+4, find the opposite of each term.
-213xf+213f=25-\left(-3x-4-4x-3\right)
To find the opposite of 4x+3, find the opposite of each term.
-213xf+213f=25-\left(-7x-4-3\right)
Combine -3x and -4x to get -7x.
-213xf+213f=25-\left(-7x-7\right)
Subtract 3 from -4 to get -7.
-213xf+213f=25+7x+7
To find the opposite of -7x-7, find the opposite of each term.
-213xf+213f=32+7x
Add 25 and 7 to get 32.
-213xf+213f-7x=32
Subtract 7x from both sides.
-213xf-7x=32-213f
Subtract 213f from both sides.
\left(-213f-7\right)x=32-213f
Combine all terms containing x.
\frac{\left(-213f-7\right)x}{-213f-7}=\frac{32-213f}{-213f-7}
Divide both sides by -213f-7.
x=\frac{32-213f}{-213f-7}
Dividing by -213f-7 undoes the multiplication by -213f-7.
x=-\frac{32-213f}{213f+7}
Divide 32-213f by -213f-7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}