Evaluate
\frac{71}{28}\approx 2.535714286
Factor
\frac{71}{2 ^ {2} \cdot 7} = 2\frac{15}{28} = 2.5357142857142856
Share
Copied to clipboard
\begin{array}{l}\phantom{28)}\phantom{1}\\28\overline{)71}\\\end{array}
Use the 1^{st} digit 7 from dividend 71
\begin{array}{l}\phantom{28)}0\phantom{2}\\28\overline{)71}\\\end{array}
Since 7 is less than 28, use the next digit 1 from dividend 71 and add 0 to the quotient
\begin{array}{l}\phantom{28)}0\phantom{3}\\28\overline{)71}\\\end{array}
Use the 2^{nd} digit 1 from dividend 71
\begin{array}{l}\phantom{28)}02\phantom{4}\\28\overline{)71}\\\phantom{28)}\underline{\phantom{}56\phantom{}}\\\phantom{28)}15\\\end{array}
Find closest multiple of 28 to 71. We see that 2 \times 28 = 56 is the nearest. Now subtract 56 from 71 to get reminder 15. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }15
Since 15 is less than 28, stop the division. The reminder is 15. The topmost line 02 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}