Solve for h
h=13
h=-17
Share
Copied to clipboard
71=\frac{1}{3}\left(4+4h+h^{2}\right)-4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-2-h\right)^{2}.
71=\frac{4}{3}+\frac{4}{3}h+\frac{1}{3}h^{2}-4
Use the distributive property to multiply \frac{1}{3} by 4+4h+h^{2}.
71=-\frac{8}{3}+\frac{4}{3}h+\frac{1}{3}h^{2}
Subtract 4 from \frac{4}{3} to get -\frac{8}{3}.
-\frac{8}{3}+\frac{4}{3}h+\frac{1}{3}h^{2}=71
Swap sides so that all variable terms are on the left hand side.
-\frac{8}{3}+\frac{4}{3}h+\frac{1}{3}h^{2}-71=0
Subtract 71 from both sides.
-\frac{221}{3}+\frac{4}{3}h+\frac{1}{3}h^{2}=0
Subtract 71 from -\frac{8}{3} to get -\frac{221}{3}.
\frac{1}{3}h^{2}+\frac{4}{3}h-\frac{221}{3}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
h=\frac{-\frac{4}{3}±\sqrt{\left(\frac{4}{3}\right)^{2}-4\times \frac{1}{3}\left(-\frac{221}{3}\right)}}{2\times \frac{1}{3}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{3} for a, \frac{4}{3} for b, and -\frac{221}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
h=\frac{-\frac{4}{3}±\sqrt{\frac{16}{9}-4\times \frac{1}{3}\left(-\frac{221}{3}\right)}}{2\times \frac{1}{3}}
Square \frac{4}{3} by squaring both the numerator and the denominator of the fraction.
h=\frac{-\frac{4}{3}±\sqrt{\frac{16}{9}-\frac{4}{3}\left(-\frac{221}{3}\right)}}{2\times \frac{1}{3}}
Multiply -4 times \frac{1}{3}.
h=\frac{-\frac{4}{3}±\sqrt{\frac{16+884}{9}}}{2\times \frac{1}{3}}
Multiply -\frac{4}{3} times -\frac{221}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
h=\frac{-\frac{4}{3}±\sqrt{100}}{2\times \frac{1}{3}}
Add \frac{16}{9} to \frac{884}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
h=\frac{-\frac{4}{3}±10}{2\times \frac{1}{3}}
Take the square root of 100.
h=\frac{-\frac{4}{3}±10}{\frac{2}{3}}
Multiply 2 times \frac{1}{3}.
h=\frac{\frac{26}{3}}{\frac{2}{3}}
Now solve the equation h=\frac{-\frac{4}{3}±10}{\frac{2}{3}} when ± is plus. Add -\frac{4}{3} to 10.
h=13
Divide \frac{26}{3} by \frac{2}{3} by multiplying \frac{26}{3} by the reciprocal of \frac{2}{3}.
h=-\frac{\frac{34}{3}}{\frac{2}{3}}
Now solve the equation h=\frac{-\frac{4}{3}±10}{\frac{2}{3}} when ± is minus. Subtract 10 from -\frac{4}{3}.
h=-17
Divide -\frac{34}{3} by \frac{2}{3} by multiplying -\frac{34}{3} by the reciprocal of \frac{2}{3}.
h=13 h=-17
The equation is now solved.
71=\frac{1}{3}\left(4+4h+h^{2}\right)-4
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-2-h\right)^{2}.
71=\frac{4}{3}+\frac{4}{3}h+\frac{1}{3}h^{2}-4
Use the distributive property to multiply \frac{1}{3} by 4+4h+h^{2}.
71=-\frac{8}{3}+\frac{4}{3}h+\frac{1}{3}h^{2}
Subtract 4 from \frac{4}{3} to get -\frac{8}{3}.
-\frac{8}{3}+\frac{4}{3}h+\frac{1}{3}h^{2}=71
Swap sides so that all variable terms are on the left hand side.
\frac{4}{3}h+\frac{1}{3}h^{2}=71+\frac{8}{3}
Add \frac{8}{3} to both sides.
\frac{4}{3}h+\frac{1}{3}h^{2}=\frac{221}{3}
Add 71 and \frac{8}{3} to get \frac{221}{3}.
\frac{1}{3}h^{2}+\frac{4}{3}h=\frac{221}{3}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{1}{3}h^{2}+\frac{4}{3}h}{\frac{1}{3}}=\frac{\frac{221}{3}}{\frac{1}{3}}
Multiply both sides by 3.
h^{2}+\frac{\frac{4}{3}}{\frac{1}{3}}h=\frac{\frac{221}{3}}{\frac{1}{3}}
Dividing by \frac{1}{3} undoes the multiplication by \frac{1}{3}.
h^{2}+4h=\frac{\frac{221}{3}}{\frac{1}{3}}
Divide \frac{4}{3} by \frac{1}{3} by multiplying \frac{4}{3} by the reciprocal of \frac{1}{3}.
h^{2}+4h=221
Divide \frac{221}{3} by \frac{1}{3} by multiplying \frac{221}{3} by the reciprocal of \frac{1}{3}.
h^{2}+4h+2^{2}=221+2^{2}
Divide 4, the coefficient of the x term, by 2 to get 2. Then add the square of 2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
h^{2}+4h+4=221+4
Square 2.
h^{2}+4h+4=225
Add 221 to 4.
\left(h+2\right)^{2}=225
Factor h^{2}+4h+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(h+2\right)^{2}}=\sqrt{225}
Take the square root of both sides of the equation.
h+2=15 h+2=-15
Simplify.
h=13 h=-17
Subtract 2 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}