Evaluate
\frac{7071}{70}\approx 101.014285714
Factor
\frac{3 \cdot 2357}{2 \cdot 5 \cdot 7} = 101\frac{1}{70} = 101.01428571428572
Share
Copied to clipboard
\begin{array}{l}\phantom{70)}\phantom{1}\\70\overline{)7071}\\\end{array}
Use the 1^{st} digit 7 from dividend 7071
\begin{array}{l}\phantom{70)}0\phantom{2}\\70\overline{)7071}\\\end{array}
Since 7 is less than 70, use the next digit 0 from dividend 7071 and add 0 to the quotient
\begin{array}{l}\phantom{70)}0\phantom{3}\\70\overline{)7071}\\\end{array}
Use the 2^{nd} digit 0 from dividend 7071
\begin{array}{l}\phantom{70)}01\phantom{4}\\70\overline{)7071}\\\phantom{70)}\underline{\phantom{}70\phantom{99}}\\\phantom{70)99}0\\\end{array}
Find closest multiple of 70 to 70. We see that 1 \times 70 = 70 is the nearest. Now subtract 70 from 70 to get reminder 0. Add 1 to quotient.
\begin{array}{l}\phantom{70)}01\phantom{5}\\70\overline{)7071}\\\phantom{70)}\underline{\phantom{}70\phantom{99}}\\\phantom{70)99}7\\\end{array}
Use the 3^{rd} digit 7 from dividend 7071
\begin{array}{l}\phantom{70)}010\phantom{6}\\70\overline{)7071}\\\phantom{70)}\underline{\phantom{}70\phantom{99}}\\\phantom{70)99}7\\\end{array}
Since 7 is less than 70, use the next digit 1 from dividend 7071 and add 0 to the quotient
\begin{array}{l}\phantom{70)}010\phantom{7}\\70\overline{)7071}\\\phantom{70)}\underline{\phantom{}70\phantom{99}}\\\phantom{70)99}71\\\end{array}
Use the 4^{th} digit 1 from dividend 7071
\begin{array}{l}\phantom{70)}0101\phantom{8}\\70\overline{)7071}\\\phantom{70)}\underline{\phantom{}70\phantom{99}}\\\phantom{70)99}71\\\phantom{70)}\underline{\phantom{99}70\phantom{}}\\\phantom{70)999}1\\\end{array}
Find closest multiple of 70 to 71. We see that 1 \times 70 = 70 is the nearest. Now subtract 70 from 71 to get reminder 1. Add 1 to quotient.
\text{Quotient: }101 \text{Reminder: }1
Since 1 is less than 70, stop the division. The reminder is 1. The topmost line 0101 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 101.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}