Solve for x
x=\frac{\sqrt{19}}{10}\approx 0.435889894
x=-\frac{\sqrt{19}}{10}\approx -0.435889894
Graph
Share
Copied to clipboard
1-x^{2}=\frac{5670}{7000}
Divide both sides by 7000.
1-x^{2}=\frac{81}{100}
Reduce the fraction \frac{5670}{7000} to lowest terms by extracting and canceling out 70.
-x^{2}=\frac{81}{100}-1
Subtract 1 from both sides.
-x^{2}=-\frac{19}{100}
Subtract 1 from \frac{81}{100} to get -\frac{19}{100}.
x^{2}=\frac{-\frac{19}{100}}{-1}
Divide both sides by -1.
x^{2}=\frac{-19}{100\left(-1\right)}
Express \frac{-\frac{19}{100}}{-1} as a single fraction.
x^{2}=\frac{-19}{-100}
Multiply 100 and -1 to get -100.
x^{2}=\frac{19}{100}
Fraction \frac{-19}{-100} can be simplified to \frac{19}{100} by removing the negative sign from both the numerator and the denominator.
x=\frac{\sqrt{19}}{10} x=-\frac{\sqrt{19}}{10}
Take the square root of both sides of the equation.
1-x^{2}=\frac{5670}{7000}
Divide both sides by 7000.
1-x^{2}=\frac{81}{100}
Reduce the fraction \frac{5670}{7000} to lowest terms by extracting and canceling out 70.
1-x^{2}-\frac{81}{100}=0
Subtract \frac{81}{100} from both sides.
\frac{19}{100}-x^{2}=0
Subtract \frac{81}{100} from 1 to get \frac{19}{100}.
-x^{2}+\frac{19}{100}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)\times \frac{19}{100}}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 0 for b, and \frac{19}{100} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-1\right)\times \frac{19}{100}}}{2\left(-1\right)}
Square 0.
x=\frac{0±\sqrt{4\times \frac{19}{100}}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{0±\sqrt{\frac{19}{25}}}{2\left(-1\right)}
Multiply 4 times \frac{19}{100}.
x=\frac{0±\frac{\sqrt{19}}{5}}{2\left(-1\right)}
Take the square root of \frac{19}{25}.
x=\frac{0±\frac{\sqrt{19}}{5}}{-2}
Multiply 2 times -1.
x=-\frac{\sqrt{19}}{10}
Now solve the equation x=\frac{0±\frac{\sqrt{19}}{5}}{-2} when ± is plus.
x=\frac{\sqrt{19}}{10}
Now solve the equation x=\frac{0±\frac{\sqrt{19}}{5}}{-2} when ± is minus.
x=-\frac{\sqrt{19}}{10} x=\frac{\sqrt{19}}{10}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}