Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

8\left(875x^{2}-610x+99\right)
Factor out 8.
a+b=-610 ab=875\times 99=86625
Consider 875x^{2}-610x+99. Factor the expression by grouping. First, the expression needs to be rewritten as 875x^{2}+ax+bx+99. To find a and b, set up a system to be solved.
-1,-86625 -3,-28875 -5,-17325 -7,-12375 -9,-9625 -11,-7875 -15,-5775 -21,-4125 -25,-3465 -33,-2625 -35,-2475 -45,-1925 -55,-1575 -63,-1375 -75,-1155 -77,-1125 -99,-875 -105,-825 -125,-693 -165,-525 -175,-495 -225,-385 -231,-375 -275,-315
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 86625.
-1-86625=-86626 -3-28875=-28878 -5-17325=-17330 -7-12375=-12382 -9-9625=-9634 -11-7875=-7886 -15-5775=-5790 -21-4125=-4146 -25-3465=-3490 -33-2625=-2658 -35-2475=-2510 -45-1925=-1970 -55-1575=-1630 -63-1375=-1438 -75-1155=-1230 -77-1125=-1202 -99-875=-974 -105-825=-930 -125-693=-818 -165-525=-690 -175-495=-670 -225-385=-610 -231-375=-606 -275-315=-590
Calculate the sum for each pair.
a=-385 b=-225
The solution is the pair that gives sum -610.
\left(875x^{2}-385x\right)+\left(-225x+99\right)
Rewrite 875x^{2}-610x+99 as \left(875x^{2}-385x\right)+\left(-225x+99\right).
35x\left(25x-11\right)-9\left(25x-11\right)
Factor out 35x in the first and -9 in the second group.
\left(25x-11\right)\left(35x-9\right)
Factor out common term 25x-11 by using distributive property.
8\left(25x-11\right)\left(35x-9\right)
Rewrite the complete factored expression.
7000x^{2}-4880x+792=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-4880\right)±\sqrt{\left(-4880\right)^{2}-4\times 7000\times 792}}{2\times 7000}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4880\right)±\sqrt{23814400-4\times 7000\times 792}}{2\times 7000}
Square -4880.
x=\frac{-\left(-4880\right)±\sqrt{23814400-28000\times 792}}{2\times 7000}
Multiply -4 times 7000.
x=\frac{-\left(-4880\right)±\sqrt{23814400-22176000}}{2\times 7000}
Multiply -28000 times 792.
x=\frac{-\left(-4880\right)±\sqrt{1638400}}{2\times 7000}
Add 23814400 to -22176000.
x=\frac{-\left(-4880\right)±1280}{2\times 7000}
Take the square root of 1638400.
x=\frac{4880±1280}{2\times 7000}
The opposite of -4880 is 4880.
x=\frac{4880±1280}{14000}
Multiply 2 times 7000.
x=\frac{6160}{14000}
Now solve the equation x=\frac{4880±1280}{14000} when ± is plus. Add 4880 to 1280.
x=\frac{11}{25}
Reduce the fraction \frac{6160}{14000} to lowest terms by extracting and canceling out 560.
x=\frac{3600}{14000}
Now solve the equation x=\frac{4880±1280}{14000} when ± is minus. Subtract 1280 from 4880.
x=\frac{9}{35}
Reduce the fraction \frac{3600}{14000} to lowest terms by extracting and canceling out 400.
7000x^{2}-4880x+792=7000\left(x-\frac{11}{25}\right)\left(x-\frac{9}{35}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{11}{25} for x_{1} and \frac{9}{35} for x_{2}.
7000x^{2}-4880x+792=7000\times \frac{25x-11}{25}\left(x-\frac{9}{35}\right)
Subtract \frac{11}{25} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
7000x^{2}-4880x+792=7000\times \frac{25x-11}{25}\times \frac{35x-9}{35}
Subtract \frac{9}{35} from x by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
7000x^{2}-4880x+792=7000\times \frac{\left(25x-11\right)\left(35x-9\right)}{25\times 35}
Multiply \frac{25x-11}{25} times \frac{35x-9}{35} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
7000x^{2}-4880x+792=7000\times \frac{\left(25x-11\right)\left(35x-9\right)}{875}
Multiply 25 times 35.
7000x^{2}-4880x+792=8\left(25x-11\right)\left(35x-9\right)
Cancel out 875, the greatest common factor in 7000 and 875.