Factor
-5\left(x-70\right)\left(x+20\right)
Evaluate
-5\left(x-70\right)\left(x+20\right)
Graph
Share
Copied to clipboard
5\left(1400+50x-x^{2}\right)
Factor out 5.
-x^{2}+50x+1400
Consider 1400+50x-x^{2}. Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=50 ab=-1400=-1400
Factor the expression by grouping. First, the expression needs to be rewritten as -x^{2}+ax+bx+1400. To find a and b, set up a system to be solved.
-1,1400 -2,700 -4,350 -5,280 -7,200 -8,175 -10,140 -14,100 -20,70 -25,56 -28,50 -35,40
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -1400.
-1+1400=1399 -2+700=698 -4+350=346 -5+280=275 -7+200=193 -8+175=167 -10+140=130 -14+100=86 -20+70=50 -25+56=31 -28+50=22 -35+40=5
Calculate the sum for each pair.
a=70 b=-20
The solution is the pair that gives sum 50.
\left(-x^{2}+70x\right)+\left(-20x+1400\right)
Rewrite -x^{2}+50x+1400 as \left(-x^{2}+70x\right)+\left(-20x+1400\right).
-x\left(x-70\right)-20\left(x-70\right)
Factor out -x in the first and -20 in the second group.
\left(x-70\right)\left(-x-20\right)
Factor out common term x-70 by using distributive property.
5\left(x-70\right)\left(-x-20\right)
Rewrite the complete factored expression.
-5x^{2}+250x+7000=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-250±\sqrt{250^{2}-4\left(-5\right)\times 7000}}{2\left(-5\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-250±\sqrt{62500-4\left(-5\right)\times 7000}}{2\left(-5\right)}
Square 250.
x=\frac{-250±\sqrt{62500+20\times 7000}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-250±\sqrt{62500+140000}}{2\left(-5\right)}
Multiply 20 times 7000.
x=\frac{-250±\sqrt{202500}}{2\left(-5\right)}
Add 62500 to 140000.
x=\frac{-250±450}{2\left(-5\right)}
Take the square root of 202500.
x=\frac{-250±450}{-10}
Multiply 2 times -5.
x=\frac{200}{-10}
Now solve the equation x=\frac{-250±450}{-10} when ± is plus. Add -250 to 450.
x=-20
Divide 200 by -10.
x=-\frac{700}{-10}
Now solve the equation x=\frac{-250±450}{-10} when ± is minus. Subtract 450 from -250.
x=70
Divide -700 by -10.
-5x^{2}+250x+7000=-5\left(x-\left(-20\right)\right)\left(x-70\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -20 for x_{1} and 70 for x_{2}.
-5x^{2}+250x+7000=-5\left(x+20\right)\left(x-70\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}