Evaluate
\frac{700}{41}\approx 17.073170732
Factor
\frac{2 ^ {2} \cdot 5 ^ {2} \cdot 7}{41} = 17\frac{3}{41} = 17.073170731707318
Share
Copied to clipboard
\begin{array}{l}\phantom{41)}\phantom{1}\\41\overline{)700}\\\end{array}
Use the 1^{st} digit 7 from dividend 700
\begin{array}{l}\phantom{41)}0\phantom{2}\\41\overline{)700}\\\end{array}
Since 7 is less than 41, use the next digit 0 from dividend 700 and add 0 to the quotient
\begin{array}{l}\phantom{41)}0\phantom{3}\\41\overline{)700}\\\end{array}
Use the 2^{nd} digit 0 from dividend 700
\begin{array}{l}\phantom{41)}01\phantom{4}\\41\overline{)700}\\\phantom{41)}\underline{\phantom{}41\phantom{9}}\\\phantom{41)}29\\\end{array}
Find closest multiple of 41 to 70. We see that 1 \times 41 = 41 is the nearest. Now subtract 41 from 70 to get reminder 29. Add 1 to quotient.
\begin{array}{l}\phantom{41)}01\phantom{5}\\41\overline{)700}\\\phantom{41)}\underline{\phantom{}41\phantom{9}}\\\phantom{41)}290\\\end{array}
Use the 3^{rd} digit 0 from dividend 700
\begin{array}{l}\phantom{41)}017\phantom{6}\\41\overline{)700}\\\phantom{41)}\underline{\phantom{}41\phantom{9}}\\\phantom{41)}290\\\phantom{41)}\underline{\phantom{}287\phantom{}}\\\phantom{41)99}3\\\end{array}
Find closest multiple of 41 to 290. We see that 7 \times 41 = 287 is the nearest. Now subtract 287 from 290 to get reminder 3. Add 7 to quotient.
\text{Quotient: }17 \text{Reminder: }3
Since 3 is less than 41, stop the division. The reminder is 3. The topmost line 017 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 17.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}