Solve for a_1
a_{1} = \frac{44800}{127} = 352\frac{96}{127} \approx 352.755905512
Share
Copied to clipboard
700=\frac{a_{1}-a_{1}\times \frac{1}{128}}{1-\frac{1}{2}}
Calculate \frac{1}{2} to the power of 7 and get \frac{1}{128}.
700=\frac{\frac{127}{128}a_{1}}{1-\frac{1}{2}}
Combine a_{1} and -a_{1}\times \frac{1}{128} to get \frac{127}{128}a_{1}.
700=\frac{\frac{127}{128}a_{1}}{\frac{2}{2}-\frac{1}{2}}
Convert 1 to fraction \frac{2}{2}.
700=\frac{\frac{127}{128}a_{1}}{\frac{2-1}{2}}
Since \frac{2}{2} and \frac{1}{2} have the same denominator, subtract them by subtracting their numerators.
700=\frac{\frac{127}{128}a_{1}}{\frac{1}{2}}
Subtract 1 from 2 to get 1.
700=\frac{127}{64}a_{1}
Divide \frac{127}{128}a_{1} by \frac{1}{2} to get \frac{127}{64}a_{1}.
\frac{127}{64}a_{1}=700
Swap sides so that all variable terms are on the left hand side.
a_{1}=700\times \frac{64}{127}
Multiply both sides by \frac{64}{127}, the reciprocal of \frac{127}{64}.
a_{1}=\frac{700\times 64}{127}
Express 700\times \frac{64}{127} as a single fraction.
a_{1}=\frac{44800}{127}
Multiply 700 and 64 to get 44800.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}