Solve for h
h = \frac{4 \sqrt{11 - \sqrt{67}}}{3} \approx 2.236921388
h = -\frac{4 \sqrt{11 - \sqrt{67}}}{3} \approx -2.236921388
Share
Copied to clipboard
\left(70-\frac{15}{4}h^{2}\right)^{2}=\left(10\sqrt{25+\frac{h^{2}}{4}}\right)^{2}
Square both sides of the equation.
4900-525h^{2}+\frac{225}{16}\left(h^{2}\right)^{2}=\left(10\sqrt{25+\frac{h^{2}}{4}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(70-\frac{15}{4}h^{2}\right)^{2}.
4900-525h^{2}+\frac{225}{16}h^{4}=\left(10\sqrt{25+\frac{h^{2}}{4}}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
4900-525h^{2}+\frac{225}{16}h^{4}=10^{2}\left(\sqrt{25+\frac{h^{2}}{4}}\right)^{2}
Expand \left(10\sqrt{25+\frac{h^{2}}{4}}\right)^{2}.
4900-525h^{2}+\frac{225}{16}h^{4}=100\left(\sqrt{25+\frac{h^{2}}{4}}\right)^{2}
Calculate 10 to the power of 2 and get 100.
4900-525h^{2}+\frac{225}{16}h^{4}=100\left(25+\frac{h^{2}}{4}\right)
Calculate \sqrt{25+\frac{h^{2}}{4}} to the power of 2 and get 25+\frac{h^{2}}{4}.
4900-525h^{2}+\frac{225}{16}h^{4}=2500+100\times \frac{h^{2}}{4}
Use the distributive property to multiply 100 by 25+\frac{h^{2}}{4}.
4900-525h^{2}+\frac{225}{16}h^{4}=2500+25h^{2}
Cancel out 4, the greatest common factor in 100 and 4.
4900-525h^{2}+\frac{225}{16}h^{4}-2500=25h^{2}
Subtract 2500 from both sides.
2400-525h^{2}+\frac{225}{16}h^{4}=25h^{2}
Subtract 2500 from 4900 to get 2400.
2400-525h^{2}+\frac{225}{16}h^{4}-25h^{2}=0
Subtract 25h^{2} from both sides.
2400-550h^{2}+\frac{225}{16}h^{4}=0
Combine -525h^{2} and -25h^{2} to get -550h^{2}.
\frac{225}{16}t^{2}-550t+2400=0
Substitute t for h^{2}.
t=\frac{-\left(-550\right)±\sqrt{\left(-550\right)^{2}-4\times \frac{225}{16}\times 2400}}{2\times \frac{225}{16}}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute \frac{225}{16} for a, -550 for b, and 2400 for c in the quadratic formula.
t=\frac{550±50\sqrt{67}}{\frac{225}{8}}
Do the calculations.
t=\frac{16\sqrt{67}+176}{9} t=\frac{176-16\sqrt{67}}{9}
Solve the equation t=\frac{550±50\sqrt{67}}{\frac{225}{8}} when ± is plus and when ± is minus.
h=\frac{4\sqrt{\sqrt{67}+11}}{3} h=-\frac{4\sqrt{\sqrt{67}+11}}{3} h=\frac{4\sqrt{11-\sqrt{67}}}{3} h=-\frac{4\sqrt{11-\sqrt{67}}}{3}
Since h=t^{2}, the solutions are obtained by evaluating h=±\sqrt{t} for each t.
70-\frac{15}{4}\times \left(\frac{4\sqrt{\sqrt{67}+11}}{3}\right)^{2}=10\sqrt{25+\frac{\left(\frac{4\sqrt{\sqrt{67}+11}}{3}\right)^{2}}{4}}
Substitute \frac{4\sqrt{\sqrt{67}+11}}{3} for h in the equation 70-\frac{15}{4}h^{2}=10\sqrt{25+\frac{h^{2}}{4}}.
-\frac{10}{3}-\frac{20}{3}\times 67^{\frac{1}{2}}=\frac{20}{3}\times 67^{\frac{1}{2}}+\frac{10}{3}
Simplify. The value h=\frac{4\sqrt{\sqrt{67}+11}}{3} does not satisfy the equation because the left and the right hand side have opposite signs.
70-\frac{15}{4}\left(-\frac{4\sqrt{\sqrt{67}+11}}{3}\right)^{2}=10\sqrt{25+\frac{\left(-\frac{4\sqrt{\sqrt{67}+11}}{3}\right)^{2}}{4}}
Substitute -\frac{4\sqrt{\sqrt{67}+11}}{3} for h in the equation 70-\frac{15}{4}h^{2}=10\sqrt{25+\frac{h^{2}}{4}}.
-\frac{10}{3}-\frac{20}{3}\times 67^{\frac{1}{2}}=\frac{20}{3}\times 67^{\frac{1}{2}}+\frac{10}{3}
Simplify. The value h=-\frac{4\sqrt{\sqrt{67}+11}}{3} does not satisfy the equation because the left and the right hand side have opposite signs.
70-\frac{15}{4}\times \left(\frac{4\sqrt{11-\sqrt{67}}}{3}\right)^{2}=10\sqrt{25+\frac{\left(\frac{4\sqrt{11-\sqrt{67}}}{3}\right)^{2}}{4}}
Substitute \frac{4\sqrt{11-\sqrt{67}}}{3} for h in the equation 70-\frac{15}{4}h^{2}=10\sqrt{25+\frac{h^{2}}{4}}.
-\frac{10}{3}+\frac{20}{3}\times 67^{\frac{1}{2}}=\frac{20}{3}\times 67^{\frac{1}{2}}-\frac{10}{3}
Simplify. The value h=\frac{4\sqrt{11-\sqrt{67}}}{3} satisfies the equation.
70-\frac{15}{4}\left(-\frac{4\sqrt{11-\sqrt{67}}}{3}\right)^{2}=10\sqrt{25+\frac{\left(-\frac{4\sqrt{11-\sqrt{67}}}{3}\right)^{2}}{4}}
Substitute -\frac{4\sqrt{11-\sqrt{67}}}{3} for h in the equation 70-\frac{15}{4}h^{2}=10\sqrt{25+\frac{h^{2}}{4}}.
-\frac{10}{3}+\frac{20}{3}\times 67^{\frac{1}{2}}=\frac{20}{3}\times 67^{\frac{1}{2}}-\frac{10}{3}
Simplify. The value h=-\frac{4\sqrt{11-\sqrt{67}}}{3} satisfies the equation.
h=\frac{4\sqrt{11-\sqrt{67}}}{3} h=-\frac{4\sqrt{11-\sqrt{67}}}{3}
List all solutions of -\frac{15h^{2}}{4}+70=10\sqrt{\frac{h^{2}}{4}+25}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}