Skip to main content
Solve for h
Tick mark Image

Similar Problems from Web Search

Share

\left(70-\frac{15}{4}h^{2}\right)^{2}=\left(10\sqrt{25+\frac{h^{2}}{4}}\right)^{2}
Square both sides of the equation.
4900-525h^{2}+\frac{225}{16}\left(h^{2}\right)^{2}=\left(10\sqrt{25+\frac{h^{2}}{4}}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(70-\frac{15}{4}h^{2}\right)^{2}.
4900-525h^{2}+\frac{225}{16}h^{4}=\left(10\sqrt{25+\frac{h^{2}}{4}}\right)^{2}
To raise a power to another power, multiply the exponents. Multiply 2 and 2 to get 4.
4900-525h^{2}+\frac{225}{16}h^{4}=10^{2}\left(\sqrt{25+\frac{h^{2}}{4}}\right)^{2}
Expand \left(10\sqrt{25+\frac{h^{2}}{4}}\right)^{2}.
4900-525h^{2}+\frac{225}{16}h^{4}=100\left(\sqrt{25+\frac{h^{2}}{4}}\right)^{2}
Calculate 10 to the power of 2 and get 100.
4900-525h^{2}+\frac{225}{16}h^{4}=100\left(25+\frac{h^{2}}{4}\right)
Calculate \sqrt{25+\frac{h^{2}}{4}} to the power of 2 and get 25+\frac{h^{2}}{4}.
4900-525h^{2}+\frac{225}{16}h^{4}=2500+100\times \frac{h^{2}}{4}
Use the distributive property to multiply 100 by 25+\frac{h^{2}}{4}.
4900-525h^{2}+\frac{225}{16}h^{4}=2500+25h^{2}
Cancel out 4, the greatest common factor in 100 and 4.
4900-525h^{2}+\frac{225}{16}h^{4}-2500=25h^{2}
Subtract 2500 from both sides.
2400-525h^{2}+\frac{225}{16}h^{4}=25h^{2}
Subtract 2500 from 4900 to get 2400.
2400-525h^{2}+\frac{225}{16}h^{4}-25h^{2}=0
Subtract 25h^{2} from both sides.
2400-550h^{2}+\frac{225}{16}h^{4}=0
Combine -525h^{2} and -25h^{2} to get -550h^{2}.
\frac{225}{16}t^{2}-550t+2400=0
Substitute t for h^{2}.
t=\frac{-\left(-550\right)±\sqrt{\left(-550\right)^{2}-4\times \frac{225}{16}\times 2400}}{2\times \frac{225}{16}}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute \frac{225}{16} for a, -550 for b, and 2400 for c in the quadratic formula.
t=\frac{550±50\sqrt{67}}{\frac{225}{8}}
Do the calculations.
t=\frac{16\sqrt{67}+176}{9} t=\frac{176-16\sqrt{67}}{9}
Solve the equation t=\frac{550±50\sqrt{67}}{\frac{225}{8}} when ± is plus and when ± is minus.
h=\frac{4\sqrt{\sqrt{67}+11}}{3} h=-\frac{4\sqrt{\sqrt{67}+11}}{3} h=\frac{4\sqrt{11-\sqrt{67}}}{3} h=-\frac{4\sqrt{11-\sqrt{67}}}{3}
Since h=t^{2}, the solutions are obtained by evaluating h=±\sqrt{t} for each t.
70-\frac{15}{4}\times \left(\frac{4\sqrt{\sqrt{67}+11}}{3}\right)^{2}=10\sqrt{25+\frac{\left(\frac{4\sqrt{\sqrt{67}+11}}{3}\right)^{2}}{4}}
Substitute \frac{4\sqrt{\sqrt{67}+11}}{3} for h in the equation 70-\frac{15}{4}h^{2}=10\sqrt{25+\frac{h^{2}}{4}}.
-\frac{10}{3}-\frac{20}{3}\times 67^{\frac{1}{2}}=\frac{20}{3}\times 67^{\frac{1}{2}}+\frac{10}{3}
Simplify. The value h=\frac{4\sqrt{\sqrt{67}+11}}{3} does not satisfy the equation because the left and the right hand side have opposite signs.
70-\frac{15}{4}\left(-\frac{4\sqrt{\sqrt{67}+11}}{3}\right)^{2}=10\sqrt{25+\frac{\left(-\frac{4\sqrt{\sqrt{67}+11}}{3}\right)^{2}}{4}}
Substitute -\frac{4\sqrt{\sqrt{67}+11}}{3} for h in the equation 70-\frac{15}{4}h^{2}=10\sqrt{25+\frac{h^{2}}{4}}.
-\frac{10}{3}-\frac{20}{3}\times 67^{\frac{1}{2}}=\frac{20}{3}\times 67^{\frac{1}{2}}+\frac{10}{3}
Simplify. The value h=-\frac{4\sqrt{\sqrt{67}+11}}{3} does not satisfy the equation because the left and the right hand side have opposite signs.
70-\frac{15}{4}\times \left(\frac{4\sqrt{11-\sqrt{67}}}{3}\right)^{2}=10\sqrt{25+\frac{\left(\frac{4\sqrt{11-\sqrt{67}}}{3}\right)^{2}}{4}}
Substitute \frac{4\sqrt{11-\sqrt{67}}}{3} for h in the equation 70-\frac{15}{4}h^{2}=10\sqrt{25+\frac{h^{2}}{4}}.
-\frac{10}{3}+\frac{20}{3}\times 67^{\frac{1}{2}}=\frac{20}{3}\times 67^{\frac{1}{2}}-\frac{10}{3}
Simplify. The value h=\frac{4\sqrt{11-\sqrt{67}}}{3} satisfies the equation.
70-\frac{15}{4}\left(-\frac{4\sqrt{11-\sqrt{67}}}{3}\right)^{2}=10\sqrt{25+\frac{\left(-\frac{4\sqrt{11-\sqrt{67}}}{3}\right)^{2}}{4}}
Substitute -\frac{4\sqrt{11-\sqrt{67}}}{3} for h in the equation 70-\frac{15}{4}h^{2}=10\sqrt{25+\frac{h^{2}}{4}}.
-\frac{10}{3}+\frac{20}{3}\times 67^{\frac{1}{2}}=\frac{20}{3}\times 67^{\frac{1}{2}}-\frac{10}{3}
Simplify. The value h=-\frac{4\sqrt{11-\sqrt{67}}}{3} satisfies the equation.
h=\frac{4\sqrt{11-\sqrt{67}}}{3} h=-\frac{4\sqrt{11-\sqrt{67}}}{3}
List all solutions of -\frac{15h^{2}}{4}+70=10\sqrt{\frac{h^{2}}{4}+25}.