Solve for U
U=\frac{90}{139}\approx 0.647482014
Share
Copied to clipboard
70\times 10^{-3}\times 90U=U\times 0.045+90\times 0.045
Variable U cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 90U, the least common multiple of 90,U.
70\times \frac{1}{1000}\times 90U=U\times 0.045+90\times 0.045
Calculate 10 to the power of -3 and get \frac{1}{1000}.
\frac{7}{100}\times 90U=U\times 0.045+90\times 0.045
Multiply 70 and \frac{1}{1000} to get \frac{7}{100}.
\frac{63}{10}U=U\times 0.045+90\times 0.045
Multiply \frac{7}{100} and 90 to get \frac{63}{10}.
\frac{63}{10}U=U\times 0.045+4.05
Multiply 90 and 0.045 to get 4.05.
\frac{63}{10}U-U\times 0.045=4.05
Subtract U\times 0.045 from both sides.
\frac{1251}{200}U=4.05
Combine \frac{63}{10}U and -U\times 0.045 to get \frac{1251}{200}U.
U=4.05\times \frac{200}{1251}
Multiply both sides by \frac{200}{1251}, the reciprocal of \frac{1251}{200}.
U=\frac{90}{139}
Multiply 4.05 and \frac{200}{1251} to get \frac{90}{139}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}