Evaluate
\frac{7}{6}\approx 1.166666667
Factor
\frac{7}{2 \cdot 3} = 1\frac{1}{6} = 1.1666666666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{60)}\phantom{1}\\60\overline{)70}\\\end{array}
Use the 1^{st} digit 7 from dividend 70
\begin{array}{l}\phantom{60)}0\phantom{2}\\60\overline{)70}\\\end{array}
Since 7 is less than 60, use the next digit 0 from dividend 70 and add 0 to the quotient
\begin{array}{l}\phantom{60)}0\phantom{3}\\60\overline{)70}\\\end{array}
Use the 2^{nd} digit 0 from dividend 70
\begin{array}{l}\phantom{60)}01\phantom{4}\\60\overline{)70}\\\phantom{60)}\underline{\phantom{}60\phantom{}}\\\phantom{60)}10\\\end{array}
Find closest multiple of 60 to 70. We see that 1 \times 60 = 60 is the nearest. Now subtract 60 from 70 to get reminder 10. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }10
Since 10 is less than 60, stop the division. The reminder is 10. The topmost line 01 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}