Solve for x
x=2\sqrt{3}\approx 3.464101615
x=-2\sqrt{3}\approx -3.464101615
Graph
Share
Copied to clipboard
70=10+5x^{2}
Multiply 10 and 1 to get 10.
10+5x^{2}=70
Swap sides so that all variable terms are on the left hand side.
5x^{2}=70-10
Subtract 10 from both sides.
5x^{2}=60
Subtract 10 from 70 to get 60.
x^{2}=\frac{60}{5}
Divide both sides by 5.
x^{2}=12
Divide 60 by 5 to get 12.
x=2\sqrt{3} x=-2\sqrt{3}
Take the square root of both sides of the equation.
70=10+5x^{2}
Multiply 10 and 1 to get 10.
10+5x^{2}=70
Swap sides so that all variable terms are on the left hand side.
10+5x^{2}-70=0
Subtract 70 from both sides.
-60+5x^{2}=0
Subtract 70 from 10 to get -60.
5x^{2}-60=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 5\left(-60\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, 0 for b, and -60 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 5\left(-60\right)}}{2\times 5}
Square 0.
x=\frac{0±\sqrt{-20\left(-60\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{0±\sqrt{1200}}{2\times 5}
Multiply -20 times -60.
x=\frac{0±20\sqrt{3}}{2\times 5}
Take the square root of 1200.
x=\frac{0±20\sqrt{3}}{10}
Multiply 2 times 5.
x=2\sqrt{3}
Now solve the equation x=\frac{0±20\sqrt{3}}{10} when ± is plus.
x=-2\sqrt{3}
Now solve the equation x=\frac{0±20\sqrt{3}}{10} when ± is minus.
x=2\sqrt{3} x=-2\sqrt{3}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}