Solve for c
c = -\frac{602}{15} = -40\frac{2}{15} \approx -40.133333333
Share
Copied to clipboard
100-7+5\left(3c+100\right)=-9
Add 70 and 30 to get 100.
93+5\left(3c+100\right)=-9
Subtract 7 from 100 to get 93.
93+15c+500=-9
Use the distributive property to multiply 5 by 3c+100.
593+15c=-9
Add 93 and 500 to get 593.
15c=-9-593
Subtract 593 from both sides.
15c=-602
Subtract 593 from -9 to get -602.
c=\frac{-602}{15}
Divide both sides by 15.
c=-\frac{602}{15}
Fraction \frac{-602}{15} can be rewritten as -\frac{602}{15} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}