Solve for x
x=\frac{1055y}{428}+\frac{1515}{107}
Solve for y
y=\frac{428x}{1055}-\frac{1212}{211}
Graph
Share
Copied to clipboard
7.85x-10.55y-3.57x=60.6
Subtract 3.57x from both sides.
4.28x-10.55y=60.6
Combine 7.85x and -3.57x to get 4.28x.
4.28x=60.6+10.55y
Add 10.55y to both sides.
4.28x=\frac{211y}{20}+60.6
The equation is in standard form.
\frac{4.28x}{4.28}=\frac{\frac{211y}{20}+60.6}{4.28}
Divide both sides of the equation by 4.28, which is the same as multiplying both sides by the reciprocal of the fraction.
x=\frac{\frac{211y}{20}+60.6}{4.28}
Dividing by 4.28 undoes the multiplication by 4.28.
x=\frac{1055y}{428}+\frac{1515}{107}
Divide 60.6+\frac{211y}{20} by 4.28 by multiplying 60.6+\frac{211y}{20} by the reciprocal of 4.28.
-10.55y=3.57x+60.6-7.85x
Subtract 7.85x from both sides.
-10.55y=-4.28x+60.6
Combine 3.57x and -7.85x to get -4.28x.
-10.55y=-\frac{107x}{25}+60.6
The equation is in standard form.
\frac{-10.55y}{-10.55}=\frac{-\frac{107x}{25}+60.6}{-10.55}
Divide both sides of the equation by -10.55, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{-\frac{107x}{25}+60.6}{-10.55}
Dividing by -10.55 undoes the multiplication by -10.55.
y=\frac{428x}{1055}-\frac{1212}{211}
Divide -\frac{107x}{25}+60.6 by -10.55 by multiplying -\frac{107x}{25}+60.6 by the reciprocal of -10.55.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}