7.8 \% \text { of } 12.5 + 2.5 \% \text { of } 161 = ?
Evaluate
5
Factor
5
Share
Copied to clipboard
\frac{78}{1000}\times 12.5+\frac{2.5}{100}\times 161
Expand \frac{7.8}{100} by multiplying both numerator and the denominator by 10.
\frac{39}{500}\times 12.5+\frac{2.5}{100}\times 161
Reduce the fraction \frac{78}{1000} to lowest terms by extracting and canceling out 2.
\frac{39}{500}\times \frac{25}{2}+\frac{2.5}{100}\times 161
Convert decimal number 12.5 to fraction \frac{125}{10}. Reduce the fraction \frac{125}{10} to lowest terms by extracting and canceling out 5.
\frac{39\times 25}{500\times 2}+\frac{2.5}{100}\times 161
Multiply \frac{39}{500} times \frac{25}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{975}{1000}+\frac{2.5}{100}\times 161
Do the multiplications in the fraction \frac{39\times 25}{500\times 2}.
\frac{39}{40}+\frac{2.5}{100}\times 161
Reduce the fraction \frac{975}{1000} to lowest terms by extracting and canceling out 25.
\frac{39}{40}+\frac{25}{1000}\times 161
Expand \frac{2.5}{100} by multiplying both numerator and the denominator by 10.
\frac{39}{40}+\frac{1}{40}\times 161
Reduce the fraction \frac{25}{1000} to lowest terms by extracting and canceling out 25.
\frac{39}{40}+\frac{161}{40}
Multiply \frac{1}{40} and 161 to get \frac{161}{40}.
\frac{39+161}{40}
Since \frac{39}{40} and \frac{161}{40} have the same denominator, add them by adding their numerators.
\frac{200}{40}
Add 39 and 161 to get 200.
5
Divide 200 by 40 to get 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}