Solve for x
x = \frac{92125 - 1375 \sqrt{4345}}{2} \approx 744.827881388
Graph
Share
Copied to clipboard
7.5-\frac{x}{1100}=\frac{\sqrt{x}}{4}
Subtract \frac{x}{1100} from both sides of the equation.
8250-x=275\sqrt{x}
Multiply both sides of the equation by 1100, the least common multiple of 1100,4.
\left(8250-x\right)^{2}=\left(275\sqrt{x}\right)^{2}
Square both sides of the equation.
68062500-16500x+x^{2}=\left(275\sqrt{x}\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(8250-x\right)^{2}.
68062500-16500x+x^{2}=275^{2}\left(\sqrt{x}\right)^{2}
Expand \left(275\sqrt{x}\right)^{2}.
68062500-16500x+x^{2}=75625\left(\sqrt{x}\right)^{2}
Calculate 275 to the power of 2 and get 75625.
68062500-16500x+x^{2}=75625x
Calculate \sqrt{x} to the power of 2 and get x.
68062500-16500x+x^{2}-75625x=0
Subtract 75625x from both sides.
68062500-92125x+x^{2}=0
Combine -16500x and -75625x to get -92125x.
x^{2}-92125x+68062500=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-92125\right)±\sqrt{\left(-92125\right)^{2}-4\times 68062500}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -92125 for b, and 68062500 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-92125\right)±\sqrt{8487015625-4\times 68062500}}{2}
Square -92125.
x=\frac{-\left(-92125\right)±\sqrt{8487015625-272250000}}{2}
Multiply -4 times 68062500.
x=\frac{-\left(-92125\right)±\sqrt{8214765625}}{2}
Add 8487015625 to -272250000.
x=\frac{-\left(-92125\right)±1375\sqrt{4345}}{2}
Take the square root of 8214765625.
x=\frac{92125±1375\sqrt{4345}}{2}
The opposite of -92125 is 92125.
x=\frac{1375\sqrt{4345}+92125}{2}
Now solve the equation x=\frac{92125±1375\sqrt{4345}}{2} when ± is plus. Add 92125 to 1375\sqrt{4345}.
x=\frac{92125-1375\sqrt{4345}}{2}
Now solve the equation x=\frac{92125±1375\sqrt{4345}}{2} when ± is minus. Subtract 1375\sqrt{4345} from 92125.
x=\frac{1375\sqrt{4345}+92125}{2} x=\frac{92125-1375\sqrt{4345}}{2}
The equation is now solved.
7.5=\frac{\sqrt{\frac{1375\sqrt{4345}+92125}{2}}}{4}+\frac{\frac{1375\sqrt{4345}+92125}{2}}{1100}
Substitute \frac{1375\sqrt{4345}+92125}{2} for x in the equation 7.5=\frac{\sqrt{x}}{4}+\frac{x}{1100}.
7.5=\frac{305}{4}+\frac{5}{4}\times 4345^{\frac{1}{2}}
Simplify. The value x=\frac{1375\sqrt{4345}+92125}{2} does not satisfy the equation.
7.5=\frac{\sqrt{\frac{92125-1375\sqrt{4345}}{2}}}{4}+\frac{\frac{92125-1375\sqrt{4345}}{2}}{1100}
Substitute \frac{92125-1375\sqrt{4345}}{2} for x in the equation 7.5=\frac{\sqrt{x}}{4}+\frac{x}{1100}.
7.5=\frac{15}{2}
Simplify. The value x=\frac{92125-1375\sqrt{4345}}{2} satisfies the equation.
x=\frac{92125-1375\sqrt{4345}}{2}
Equation 8250-x=275\sqrt{x} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}