Solve for x
x=\frac{73\alpha }{20}+6.5
Solve for α
\alpha =\frac{20x-130}{73}
Graph
Share
Copied to clipboard
2x-13=7.3\alpha
Swap sides so that all variable terms are on the left hand side.
2x=7.3\alpha +13
Add 13 to both sides.
2x=\frac{73\alpha }{10}+13
The equation is in standard form.
\frac{2x}{2}=\frac{\frac{73\alpha }{10}+13}{2}
Divide both sides by 2.
x=\frac{\frac{73\alpha }{10}+13}{2}
Dividing by 2 undoes the multiplication by 2.
x=\frac{73\alpha }{20}+\frac{13}{2}
Divide \frac{73\alpha }{10}+13 by 2.
7.3\alpha =2x-13
The equation is in standard form.
\frac{7.3\alpha }{7.3}=\frac{2x-13}{7.3}
Divide both sides of the equation by 7.3, which is the same as multiplying both sides by the reciprocal of the fraction.
\alpha =\frac{2x-13}{7.3}
Dividing by 7.3 undoes the multiplication by 7.3.
\alpha =\frac{20x-130}{73}
Divide 2x-13 by 7.3 by multiplying 2x-13 by the reciprocal of 7.3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}