Solve for x
x\leq \frac{251}{63}
Graph
Share
Copied to clipboard
21.6x-7.2-3\left(4x+5\right)\leq x-4\left(x-7\right)
Use the distributive property to multiply 7.2 by 3x-1.
21.6x-7.2-12x-15\leq x-4\left(x-7\right)
Use the distributive property to multiply -3 by 4x+5.
9.6x-7.2-15\leq x-4\left(x-7\right)
Combine 21.6x and -12x to get 9.6x.
9.6x-22.2\leq x-4\left(x-7\right)
Subtract 15 from -7.2 to get -22.2.
9.6x-22.2\leq x-4x+28
Use the distributive property to multiply -4 by x-7.
9.6x-22.2\leq -3x+28
Combine x and -4x to get -3x.
9.6x-22.2+3x\leq 28
Add 3x to both sides.
12.6x-22.2\leq 28
Combine 9.6x and 3x to get 12.6x.
12.6x\leq 28+22.2
Add 22.2 to both sides.
12.6x\leq 50.2
Add 28 and 22.2 to get 50.2.
x\leq \frac{50.2}{12.6}
Divide both sides by 12.6. Since 12.6 is positive, the inequality direction remains the same.
x\leq \frac{502}{126}
Expand \frac{50.2}{12.6} by multiplying both numerator and the denominator by 10.
x\leq \frac{251}{63}
Reduce the fraction \frac{502}{126} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}