Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-49x^{2}=-7
Subtract 7 from both sides. Anything subtracted from zero gives its negation.
x^{2}=\frac{-7}{-49}
Divide both sides by -49.
x^{2}=\frac{1}{7}
Reduce the fraction \frac{-7}{-49} to lowest terms by extracting and canceling out -7.
x=\frac{\sqrt{7}}{7} x=-\frac{\sqrt{7}}{7}
Take the square root of both sides of the equation.
-49x^{2}+7=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-49\right)\times 7}}{2\left(-49\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -49 for a, 0 for b, and 7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-49\right)\times 7}}{2\left(-49\right)}
Square 0.
x=\frac{0±\sqrt{196\times 7}}{2\left(-49\right)}
Multiply -4 times -49.
x=\frac{0±\sqrt{1372}}{2\left(-49\right)}
Multiply 196 times 7.
x=\frac{0±14\sqrt{7}}{2\left(-49\right)}
Take the square root of 1372.
x=\frac{0±14\sqrt{7}}{-98}
Multiply 2 times -49.
x=-\frac{\sqrt{7}}{7}
Now solve the equation x=\frac{0±14\sqrt{7}}{-98} when ± is plus.
x=\frac{\sqrt{7}}{7}
Now solve the equation x=\frac{0±14\sqrt{7}}{-98} when ± is minus.
x=-\frac{\sqrt{7}}{7} x=\frac{\sqrt{7}}{7}
The equation is now solved.