Solve for x
x=\frac{77y+104}{135}
Solve for y
y=\frac{135x-104}{77}
Graph
Share
Copied to clipboard
7\left(32+11y\right)-135x=120
Multiply both sides of the equation by 15.
224+77y-135x=120
Use the distributive property to multiply 7 by 32+11y.
77y-135x=120-224
Subtract 224 from both sides.
77y-135x=-104
Subtract 224 from 120 to get -104.
-135x=-104-77y
Subtract 77y from both sides.
-135x=-77y-104
The equation is in standard form.
\frac{-135x}{-135}=\frac{-77y-104}{-135}
Divide both sides by -135.
x=\frac{-77y-104}{-135}
Dividing by -135 undoes the multiplication by -135.
x=\frac{77y+104}{135}
Divide -104-77y by -135.
7\left(32+11y\right)-135x=120
Multiply both sides of the equation by 15.
224+77y-135x=120
Use the distributive property to multiply 7 by 32+11y.
77y-135x=120-224
Subtract 224 from both sides.
77y-135x=-104
Subtract 224 from 120 to get -104.
77y=-104+135x
Add 135x to both sides.
77y=135x-104
The equation is in standard form.
\frac{77y}{77}=\frac{135x-104}{77}
Divide both sides by 77.
y=\frac{135x-104}{77}
Dividing by 77 undoes the multiplication by 77.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}