Solve for x
x = \frac{\log_{7} {(2801)}}{2} \approx 2.039593601
Solve for x (complex solution)
x=\frac{\pi n_{1}i}{\ln(7)}+\frac{\log_{7}\left(2801\right)}{2}
n_{1}\in \mathrm{Z}
Graph
Share
Copied to clipboard
7+49+7^{3}+7^{4}+7^{5}=7^{2x+1}
Calculate 7 to the power of 2 and get 49.
56+7^{3}+7^{4}+7^{5}=7^{2x+1}
Add 7 and 49 to get 56.
56+343+7^{4}+7^{5}=7^{2x+1}
Calculate 7 to the power of 3 and get 343.
399+7^{4}+7^{5}=7^{2x+1}
Add 56 and 343 to get 399.
399+2401+7^{5}=7^{2x+1}
Calculate 7 to the power of 4 and get 2401.
2800+7^{5}=7^{2x+1}
Add 399 and 2401 to get 2800.
2800+16807=7^{2x+1}
Calculate 7 to the power of 5 and get 16807.
19607=7^{2x+1}
Add 2800 and 16807 to get 19607.
7^{2x+1}=19607
Swap sides so that all variable terms are on the left hand side.
\log(7^{2x+1})=\log(19607)
Take the logarithm of both sides of the equation.
\left(2x+1\right)\log(7)=\log(19607)
The logarithm of a number raised to a power is the power times the logarithm of the number.
2x+1=\frac{\log(19607)}{\log(7)}
Divide both sides by \log(7).
2x+1=\log_{7}\left(19607\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
2x=\log_{7}\left(19607\right)-1
Subtract 1 from both sides of the equation.
x=\frac{\log_{7}\left(19607\right)-1}{2}
Divide both sides by 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}